Soluzioni Tutorato2

Manuela Grella e Simona Giovannetti

1 marzo 2005

Esercizio 1. (i) f(x) = sen x é uniformemente continua su R perché ha derivata limitata su tutto l'asse reale; infatti $f'(x) = \cos(x)$ e $|\cos(x)| \ge 1 \ \forall x \in \mathbf{R}$.

(ii) $f(x)=x^3$ non é u.c; infatti se lo fosse per il Lemma della farfalla dovrebbero esistere $A,B\in\mathbf{R}$ t.c. $|x^3|\leq Ax+B$, e quindi si avrebbe che $\frac{|x^3|}{Ax+B}\leq 1\ \forall x;$ ma $\lim_{x\to+\infty}\frac{|x^3|}{Ax+B}=+\infty$, quindi la disuguaglianza non puó valere.

(iii) $f(x) = x^{\frac{1}{3}}$ é u.c. in $[a, +\infty)$ con a > 0, perché la sua derivata in questo insieme é limitata (in particolare é minore di 1).

Esercizio 2. (i) $f(x) = \ln |\tan \frac{x}{2}|$ ha delle discontinuità di seconda specie nei punti del tipo $x = k\pi \ \forall \ k \in \mathbf{Z}$, poiché in questi punti la tangente si annulla e $\lim_{x \to 0^+} \ln x = -\infty$.

(ii) $f(x) = \ln(\cos x)$ é definita solo dove il coseno é positivo, quindi in tutti gli intervalli del tipo $k\pi + \frac{\pi}{2} < x < k\pi + \frac{3}{2}\pi$, con k dispari, e in essi la funzione f(x) é continua. Nei punti del tipo $x = 2k\pi + \frac{\pi}{2}$ sono punti di discontinuitá di seconda specie.

(iii) $f(x)=e^{\frac{1}{x+1}}$ é continua su \mathbf{R} -{-1}. Infatti su $x\neq -1$ f(x) é continua perché composizione di funzioni continue, ossia l'esponenziale e $\frac{1}{x+1}$. In -1 si ha che $\lim_{x\to -1^-}e^{\frac{1}{x+1}}=0$, mentre $\lim_{x\to -1^+}e^{\frac{1}{x+1}}=+\infty$: quindi -1 é un punto di discontinuitá di seconda specie.

 $(iv) f(x) = e^{\frac{1}{x^2}}$ é continua su **R**- $\{0\}$. Infatti su $x \neq 0$ f(x) é continua perché composizione di funzioni continue. In 0 si ha che

$$\lim_{x \to 0^{-}} e^{\frac{1}{x^{2}}} = \lim_{x \to 0^{+}} e^{\frac{1}{x^{2}}} = +\infty$$

quindi 0 é un punto di discontinuitá di seconda specie.

 $(v)f(x)=e^{-\frac{1}{x^2}}$ é continua su \mathbf{R} - $\{0\}$. Infatti su $x\neq 0$ f(x) é continua perché composizione di funzioni continue. In 0 si ha che

$$\lim_{x \to 0^{-}} e^{-\frac{1}{x^{2}}} = \lim_{x \to 0^{+}} e^{-\frac{1}{x^{2}}} = 0$$

quindi 0 é un punto di discontinuitá eliminabile o di terza spece..