Soluzioni VII tutorato di AM1a

docenti: prof. M. Girardi, prof. P. Magrone

18 novembre 2004

Esercizio 1. Utilizzando la definizione di limite, verificare che:

- a) $\lim_{n\to+\infty}\frac{n-1}{n}=1$
- **b)** $\lim_{n\to+\infty} \frac{n}{2n+1} = \frac{1}{2}$
- c) $\lim_{n\to+\infty} \frac{\cos n}{n} = 0$

Suggerimento: maggiorate $|\cos n| \cos 1!!!$

d) $\lim_{n\to+\infty} \sin\frac{1}{n} = 0$

Dovete utilizzare: $0 < \sin x < x$

e) $\lim_{n \to +\infty} \log \left(1 + \frac{1}{n}\right) = 0$

Esercizio 2. Dimostrare che, se a_n converge ad a e b_n converge a b, allora $a_n - b_n$ converge ad a - b.

Sol: lavorate con il massimo tra gli n
 che verificano la caratterizzazione per lo stesso ϵ , poi applicate la definizione, minorando con la disuguaglianza triangolare per i moduli.

Esercizio 3. Calcolare i limiti $(a, b, c, d \in \mathbb{R}, c \neq 0)$:

- a) $\lim_{n\to+\infty} \frac{an+b}{cn+d}$ Sol: $\frac{a}{c}$
- b) $\lim_{n\to+\infty} \frac{an^2+b}{cn+d}$ sol: 0 se a=0, se $a\neq 0$ varrà $+\infty \vee -$

sol: 0 se a=0, se a $\neq 0$ varrà $+\infty \vee -\infty$ a seconda del segno del rapporto a/c.

- c) $\lim_{n\to+\infty} \frac{an+b}{cn^2+d}$ Sol: 0
- d) $\lim_{n\to+\infty} \frac{an^2+b}{cn^2+d}$ Sol: $\frac{a}{c}$

Esercizio 4. Provare che se $a_n \to a \in \mathbb{R}$, con a > 0 e se $b_n \to +\infty$, allora la successione prodotto $a_n \cdot b_n$ diverge a $+\infty$.

Sol: vi basta maggiorare $a-\epsilon$ con a/2 e poi applicare la definizione.

Esercizio 5. Calcolare i seguenti limiti:

a)
$$\lim_{n\to+\infty} \frac{\sqrt{n^3+9n^2}-\sqrt{n^4+1}}{n^2+2}$$
 Sol: -1

b)
$$\lim_{n\to+\infty} \sqrt[n]{n^4+1}$$
 Sol: 1

c)
$$\lim_{n\to+\infty} \frac{n^2}{n!}$$

Sol: 0 (vi basta esplicitare i primi due termini del fattoriale)

d)
$$\lim_{n\to+\infty} \sqrt[n]{2^n+3^n}$$
 Sol: 3

e)
$$\lim_{n\to+\infty} \frac{n!}{n^n}$$

Sol: 0 (per minorazioni successive arrivate ad 1/n)

Esercizio 6. Data la successione $\{a_n\}$ definita:

$$\begin{cases} a_0 = 3\\ a_{n+1} = \frac{1}{2}a_n + 1 \end{cases} \quad n \in \mathbb{N}$$

 $\begin{cases} a_0=3 & n\in\mathbb{N}\\ a_{n+1}=\frac{1}{2}a_n+1 & \text{ricavare }a_n \text{ in funzione di }n. \text{ Stabilire se la successione è crescente o} \end{cases}$ decrescente e se essa è limitata superiormente o inferiormente. Calcolare, se esiste, $\lim_{n\to+\infty} a_n$.

Sol: la successione diventa: $a_n = \frac{2^{n+1}+1}{2^n}$