Soluzioni VI tutorato AM01a

docenti: prof. M. Girardi, prof. P. Magrone

11 novembre 2004

Esercizio 1. Dire se le seguenti affermazioni sono vere o false e motivare la risposta:

Sia E un insieme non vuoto di numeri reali.

- a) L'estremo superiore di E è sempre punto di accumulazione per E.
 - FALSO: quando l'estremo superiore è anche massimo potrebbe non essere punto di accumulazione!
- b) Se c è un punto di accumulazione per E, dato un arbitrario $\epsilon>0$, l'intervallo $(c-\epsilon,c+\epsilon)$ deve contenere infiniti punti di E. VERO!
- c) Un punto di frontiera di E è un punto isolato di E.

FALSO: ad esempio l'estremo di un intervallo in $\mathbb R$ è punto di frontiera ma non isolato.

- d) Un punto isolato di E è un punto di frontiera di E.
 - VERO: nella definizione di punto di frontiera si considera anche il centro dell'interno circolare.
- e) L'intervallo $[a, +\infty)$ risulta chiuso in \mathbb{R} , mentre l'insieme [a, b) non è nè aperto nè chiuso.

VERO

Esercizio 2. Dimostrare che:

- a) Ogni insieme A, chiuso e limitato, ha Massimo e Minimo.
- b) Se A è limitato superiormente e $supA \notin A$ allora supA è un punto di accumulazione di A.

Esercizio 3. Si consideri in \mathbb{R} l'insieme $C = A \cup B$, dove $A = \{x \in \mathbb{R} : -2 < x \leq 3\}$ e $B = \{x \in \mathbb{R} : x = -2 + \log(1 + \frac{1}{n})^{-1}, n \in \mathbb{N}_0\}$. Determinare:

a) l'insieme dei punti di accumulazione di C.

Sol:
$$\{x \in \mathbb{R} : x \in [-2, 3]\}$$

b) l'insieme dei punti isolati di C.

Sol:
$$\{x \in \mathbb{R} : x \in B\}$$

c) l'insieme dei punti di frontiera di C.

Sol:
$$\{x \in \mathbb{R} : x \in B \cup \{-2, 3\}\}$$

 \mathbf{d}) l'insieme dei punti interni di C.

Sol:
$$\{x \in \mathbb{R} : x \in (-2,3)\}$$

Esercizio 4. Dati i seguenti insiemi trovere tutti i punti di accumulazione, estremo inferiore, estremo superiore e qualora esistano massimo e minimo motivando ogni risposta con la caratterizzazione.

a) $E = \{x \in \mathbb{R} : x = (-1)^n \frac{n}{n+4}, n \in \mathbb{N}\}$

Sol: fate attenzione, bisogna considerare n pari ed n dispari e considerare l'estremo (non max o min) dei due insiemi.

b) $E = \{x \in \mathbb{R} : x = \frac{1}{n} + \log 1/n, n \in \mathbb{N}_0\}$

Sol: poichè, a meno di un numero finito di termini, gli elementi di questo insieme decrescono con n (ed inf è $-\infty$), questo insieme non ha punti di accumulazione.

c) $E = \{x \in \mathbb{R} : x = \frac{\cos n\pi}{n^2 + 16}, n \in \mathbb{N}\}$

Sol: trattate $\cos n\pi$ come $(-1)^n$.

d) $E = \{x \in \mathbb{R} : x = n + \log \frac{1}{n^2}, n \in \mathbb{N}_0\}$

Sol: modificate la struttura del logaritmo e ricordate chi tra n e $\log n$ cresce più velocemente.

Per qualsiasi chiarimento o segnalazione di errori potete contattare il tutore del corso tramite una mail all'indirizzo urbinati_st@libero.it