2. SOLUZIONI DEGLI ESERCIZI SUI PUNTI DI ACCUMULAZIONE E TOPOLOGIA DELLA RETTA REALE

Esercizio 1

$$(A) := \{ x = \frac{1}{n}, \ n \in \mathbb{N} \}$$

(A):= $\{x=\frac{1}{n},\ n\in\mathbb{N}\}$ Intuitivamente se n diventa molto grande gli elementi dell' insieme si addensano vicino a 0, e sono del resto sempre positivi, quindi un candidato ad essere punto di accumulazione é proprio 0. Dobbiamo dimostare che $\forall \varepsilon > 0 \,\exists x \in A \setminus \{0\}$ tale che $x \in I(0,\varepsilon)$. Un elemento dell'insieme, quindi della forma $x=\frac{1}{n}$ appartiene a tale intorno se

$$\frac{1}{n} < \varepsilon \Leftrightarrow n > \frac{1}{\varepsilon}.$$

Quindi tutti i numeri del tipo $\frac{1}{n}$ con $n>\frac{1}{\varepsilon}$ cadono nell'intorno di centro 0 e raggio ε , e 0 é di accumulazione per l'insieme A.

Tutti gli altri punti sono chiaramente isolati: scegliamo un generico elemento dell'insieme, detto $\overline{x} = \frac{1}{\overline{n}}$. Scegliendo $r < min \left\{ \left| \frac{1}{\overline{n}} - \frac{1}{\overline{n}-1} \right|, \left| \frac{1}{\overline{n}} - \frac{1}{\overline{n}+1} \right| \right\}$, si avrá che in $I(\frac{1}{n},r)$ non cadono altri punti di A eccetto $\frac{1}{n}$

$$(B) := \{ x = \frac{1}{2}, 3 - \frac{1}{2}, \frac{1}{3}, 3 - \frac{1}{3}, \frac{1}{4}, 3 - \frac{1}{4},, \frac{1}{n}, 3 - \frac{1}{n}; \ n \in \mathbb{N} \}$$

 $(B):=\{x=\frac{1}{2},3-\frac{1}{2},\frac{1}{3},3-\frac{1}{3},\frac{1}{4},3-\frac{1}{4},...,\frac{1}{n},3-\frac{1}{n};\ n\in\mathbb{N}\}$ Dando ad n valori sempre piú grandi osserviamo che i punti dell' insieme si vanno ad addensare intorno a 0 e 3. Verifichiamo che 0 e 3 sono effettivamente di accumulazione:

$$\forall \varepsilon > 0 \text{ se scegliamo } n > \frac{1}{\varepsilon}, \ \exists x \in A \cap I(0, \varepsilon) \setminus \{0\},$$

$$\forall \varepsilon>0 \ \text{ se scegliamo } n>\frac{1}{\varepsilon}, \ \exists x\in A\cap I(3,\varepsilon)\setminus\{3\}.$$

Tutti gli altri punti sono isolati (vedi es. precedente).

$$(C) := \{ x = \frac{n-1}{n}; \ n \in \mathbb{N} \}$$

(C):= $\{x = \frac{n-1}{n}; n \in \mathbb{N}\}$ In questo caso i punti dell' insieme si addensano intorno ad 1, dimostriamo che 1 é di accumulazione: dato $\varepsilon > 0$ qualunque, si ha

$$\frac{n-1}{n} \in I(1,\varepsilon) \Leftrightarrow 1-\varepsilon < \frac{n-1}{n} < 1+\varepsilon.$$

La disuguaglianza di destra é sempre verificata perché $\frac{n-1}{n} < 1$, inoltre $\frac{n-1}{n} > 1 - \varepsilon$ se $n > \frac{1}{\varepsilon}$. Come negli altri esercizi si verifica facilmente che tutti gli altri punti sono isolati.

Esercizio 2

- (i) N contiene infiniti punti isolati e nessuno di accumulazione.
- (ii) Gli insiemi (A), (C) dell'esercizo 1 contengono infiniti elementi ed un solo punto di accumulazione.
- (iii) $\mathbb{N} \cup \left\{ \frac{1}{n} \right\}$.

Esercizio 3

- (i) Risolvendo la disequazione otteniamo che l'insieme é equivalente all'unione dei due intervalli aperti $(-1,+1) \cup (3,5)$ e dato che l'unione di un numero finito di aperti é un aperto, l'insieme (i) é aperto.
- (ii) L' insieme non é né aperto né chiuso perché contiene l'estremo destro, 1, ma non l'estremo sinistro, 0, dato che non possiamo mai ottenere 0 come valore assunto dalla frazione $\frac{1}{n}$ per nessun valore naturale di n.
- (iii) Risolvendo l'equazione troviamo che l' insieme é costituito da due punti: $x=\frac{-3\pm\sqrt{5}}{2}$, quindi é chiuso perché unione di due chiusi (un punto é chiuso perché il suo complementare é aperto!!).
- (iv) L' insieme non é altro che $\mathbb{R} \setminus \{2\}$, quindi é aperto.

Esercizio 4

Poiché A é limitato, si ha inf $A > -\infty$, sup $A < +\infty$. Per assurdo, supponiamo che $L = \sup A \not\in A$, allora sup $A \in \mathcal{CA}$ (\mathcal{CA} é il complementare di A in \mathbb{R}), il quale deve essere aperto perché per ipotesi A é chiuso. Dalla definizine di aperto segue che esiste un intorno I(L,r) tutto contenuto in \mathcal{CA} . Del resto dalla caratterizzazione dell'estremo superiore di un insieme segue che

$$\forall \varepsilon > 0 \ \exists x \in A: L - \varepsilon < x < L,$$

se scegliamo $\varepsilon = r$, si avrá che I(L,r) contiene elementi di A, mentre sappiamo che tale intorno deve essere tutto contenuto in \mathcal{CA} . Siamo arrivati ad un assurdo quindi la dimostrazione é completa.

Esercizio 5

Sia $L = \sup A$. Dalla caratterizzazione dell'estremo superiore di un insieme segue che $\forall \varepsilon > 0 \ \exists x \in A : L - \varepsilon < x < L$. Fissiamo ε_1 e troviamo $x_1 \in A$ con $L - \varepsilon_1 < x_1 < L$. Poi fissiamo $\varepsilon_2 < \varepsilon_1$ e troviamo $x_2 \in A$ con $L - \varepsilon_2 < x_2 < L$. Iterando il procedimento otteniamo una sequenza di ε_i e una sequenza di x_i tali che $x_i \in I(L, \varepsilon_i)$ quindi possiamo concludere che $\forall r > 0, \exists x \in A \cap I(L, r) \setminus \{L\}$, cioé che L é di accumulazione per A.