Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2004/2005 AL3 - Fondamenti di Algebra Commutativa Esercizi 4 - Anelli Noetheriani e chiusura integrale

- 1. Siano M un R-modulo ed $f: M \longrightarrow M$ un omomorfismo di R-moduli. Provare che:
 - (a) Se M è Noetheriano ed f è suriettivo, allora f è un isomorfismo.
 - (b) Se M è Artiniano ed f è iniettivo, allora f è un isomorfismo.

(Sugg: Per (a) considerare i sottomoduli $Ker(f^n)$; per (b) considerare i moduli quoziente $M/Im(f^n)$).

- 2. Siano M un R-modulo ed N_1 e N_2 sotto-R-moduli di M. Provare che se $\frac{M}{N_1}$ e $\frac{M}{N_2}$ sono Noetheriani, allora anche $\frac{M}{N_1\cap N_2}$ è Noetheriano. Analogamente per Artiniano al posto di Noetheriano.
- 3. Sia M un R-modulo Noetheriano, provare che $R/\operatorname{Ann}(M)$ è un anello Noetheriano. Stabilire se si può sostituire Artiniano a Noetheriano.
- 4. Sia R un anello Noetheriano ed $f = \sum_{n=0}^{\infty} a_n X^n \in R[[X]]$. Provare che f è nilpotente se e solo se ogni a_n è nilpotente.
- 5. Sia K un campo; nell'anello K[X,Y,Z] siano $P_1=(X,Y)$, $P_2=(X,Z)$ ed M=(X,Y,Z). Sia $I=P_1P_2$. Provare che $I=P_1\cap P_2\cap M^2$ è una decomposizione primaria minimale di I; stabilire quali sono i primi isolati e quelli immersi.
- 6. Sia R un anello commutativo ed u un elemento invertibile di un anello S contenente R.
 - (a) Provare che u^{-1} è intero su R se e solo se $u^{-1} \in R[u]$.
 - (b) Provare che $R[u] \cap R[u^{-1}]$ è intero su R. (Sugg. : sia $s \in R[u] \cap R[u^{-1}]$; allora $s = r_0 + \cdots + r_m u^m = t_0 + \cdots + t_n u^n$ con $r_0, \cdots, r_m, t_0, \cdots, t_n \in R$. Si consideri lo Rmodulo generato da $\{1, u, \cdots, u^{m+n-1}\}$.
- 7. Sia D un dominio d'integrità, P un ideale primo non nullo di D finitamente generato contenuto propriamente in I. Sia x un elemto del campo dei quozienti di D tale che $xI \subseteq D$. Provare che x è intero su D.

- 8. Determinare la chiusura integrale di $\mathbb{Z}[2i]$.
- 9. Siano $R\subseteq S$ anelli con Sintero su R. Provare che :
 - (a) Se $x \in R$ è invertibile in S, allora x è invertibile in R.
 - (b) Il radicale di Jacobson di R è la contrazione in R del radicale di Jacobson di S.
- 10. Sia K un campo; la $K[X^2]$ -algebra K[X] è finita e pertanto l'estensione anulare $K[X^2] \subset K[X]$ è intera. Trovare una relazione di dipendenza integrale per ogni $f(X) \in K[X]$.
- 11. Sia K un campo ed R l'anello delle serie formali del tipo $a_0 + a_2 X^2 + a_3 X^3 + \cdots$.
 - (a) Provare che R non è integralmente chiuso.
 - (b) Determinare la chiusura integrale di R.