Università degli studi di Roma Tre Corso di Laurea in Matematica, a.a. 2005/2006 TE1 - Teoria di Galois Esercizi

27 aprile 2006

1. Calcolare il gruppo di Galois dei seguenti polinomi

(a)
$$f(x) = x^3 + x + 1$$

(b)
$$f(x) = 1 + x + x^2 + 2x^3 + x^5$$

(c)
$$f(x) = x^4 - 4x + 2$$

(d)
$$f(x) = x^4 + 4x^2 + 2$$

(e)
$$f(x) = x^4 + -10x^2 + 4$$

(f)
$$f(x) = x^4 - 2$$

- 2. Verificare esplicitamente la corrispondenza di Galois per i polinomi dell'esercizio 1.
- 3. Siano $\alpha_1 = \sqrt[4]{2}$, $\alpha_2 = i\sqrt[4]{2}$, $\alpha_3 = -\sqrt[4]{2}$ e $\alpha_4 = -i\sqrt[4]{2}$ le radici di $f(x) = x^4 2$. Osservando che $\alpha_1\alpha_2 \alpha_3\alpha_4 = 0$ dimostrare che i cicli $(\alpha_1\alpha_4)$ e $(\alpha_2\alpha_3\alpha_4)$ non appartengono al gruppo di Galois di f su \mathbb{Q} .
- 4. In ciascuno dei seguenti casi si calcoli il campo di spezzamento e il numero di campi intermedi tra il campo base e il campo di spezzamento:

(a)
$$(x^2 + 2x + 1)(x^3 + x + 1) \in \mathbb{F}_2[x]$$

(b)
$$(x^2 + 2x + 1)(x^3 + x + 1) \in \mathbb{F}_3[x]$$

(c)
$$(x^2 + 2x + 4)(x^3 + x^2 + x + 1) \in \mathbb{F}_5[x]$$