Università degli Studi Roma Tre Corso di Laurea in Matematica - a.a.2004/2005

AL4 - Numeri Algebrici (Prof. S. Gabelli)

Esercizi 4

- Siano A ⊆ B due anelli e sia I un ideale (risp. un ideale primo) di B. Mostrare che I ∩ A è un ideale (risp. un ideale primo) di A.
 Mostrare inoltre con un esempio che I ∩ A può essere primo anche se I non lo è.
- 2. Sia $K := \mathbb{Q}(\sqrt{-10})$. In \mathcal{O}_K , fattorizzare l'elemento 14 in elementi irriducibili e l'ideale $14\mathcal{O}_K$ in ideali primi.
- 3. Sia $K := \mathbb{Q}(\sqrt{-6})$. In \mathcal{O}_K , fattorizzare l'elemento 10 in elementi irriducibili e l'ideale $10\mathcal{O}_K$ in ideali primi.
- 4. Sia $K := \mathbb{Q}(\sqrt{3})$. In \mathcal{O}_K , fattorizzare l'elemento $5 + \sqrt{3}$ in elementi irriducibili e l'ideale $(5 + \sqrt{3})\mathcal{O}_K$ in ideali primi.
- 5. Determinare un elemento α in un anello di interi quadratici tale che $N(\alpha) = 31, Tr(\alpha) = 17.$
- 6. Sia α una radice del polinomio $X^3 + 3X + 7$ e sia $K = \mathbb{Q}(\alpha)$. Mostrare che α è un elemnto primo di \mathcal{O}_K .
- 7. Esiste un anello di interi algebrici in cui un elemento di norma 12 è primo?
- 8. Mostrare che in un anello di interi quadratici un numero primo $p \in \mathbb{Z}$ può essere fattorizzato al più in due elementi primi.
- 9. Determinare due elementi di un campo di interi quadratici che hanno stessa norma ma che non sono né coniugati né associati.
- 10. Determinare tutti gli elementi associati a $\sqrt{-3}$ in $\mathbb{Z}[\sqrt{-3}]$ e tutti gli elementi associati a $\sqrt{2}$ in $\mathbb{Z}[\sqrt{2}]$.
- 11. Sia $I \subseteq \mathbb{Z}[\sqrt{2}]$ l'ideale generato da 4 e $2\sqrt{2}$. Mostrare che I è un ideale principale e determinare una base intera per I.

- 12. Sia $\{\alpha_1, \ldots, \alpha_n\}$ una base intera di \mathcal{O}_K e sia $\gamma \in \mathcal{O}_K$, $\gamma \neq 0$. Mostrare che $\{\gamma\alpha_1, \ldots, \gamma\alpha_n\}$ è una base intera per l'ideale I se e soltanto se $I = \gamma \mathcal{O}_K$.
- 13. Siano α , $\beta \in \mathcal{O}_K$ tali che $N(\alpha)$ e $N(\beta)$ siano relativamente primi. Mostrare che $\alpha \mathcal{O}_K + \beta \mathcal{O}_K = \mathcal{O}_K$.
- 14. Determinare:

$$(\mathbb{Z}: 2\mathbb{Z}), \quad (\mathbb{Z}[i]: (1+i)\mathbb{Z}[i]), \quad (\mathbb{Z}[\sqrt{-5}]: 3\mathbb{Z}[\sqrt{-5}] + (1+2\sqrt{-5})\mathbb{Z}[\sqrt{-5}]).$$