AC310 - ESERCITAZIONE II

18 OTTOBRE 2012

Esercizio svolto 1. Calcolare i seguenti integrali (tutte i cammini chiusi sono orientati positivamente):

- (1) $\int_{\sigma} x \, dz$, dove σ è il segmento orientato da 0 a 1 + i.
- (2) $\int_{\{|z|=R\}} x \, dz$ in due modi diversi: (a) mediante calcolo diretto; (b) osservando che $x=\frac{z+\overline{z}}{2}=\frac{1}{2}\left(z+\frac{R^2}{z}\right)$ sulla circonferenza $\{|z|=R\}$.
- (3) $\int_{\{|z|=2\}} \frac{dz}{z^2-1}$.
- (4) $\int_{\{|z|=1\}} \frac{e^z}{z^n} dz$ al variare di $n \in \mathbb{Z}$.
- (5) $\int_{\{|z|=\rho\}} \frac{dz}{|z-a|^2}$, con la condizione che $|a| \neq \rho$.
- (6) $\int_{\{|z|=1\}} \frac{\sin z}{z^n} dz$ al variare di $n \in \mathbb{Z}$.
- (7) $\int_{\{|z|=2\}} z^n (1-z)^m dz$, al variare di $n, m \in \mathbb{Z}$.

Soluzione.

(1) Considerando la parametrizzazione $\sigma(t) = (1+i)t$ per $t \in [0,1]$, si ottiene:

$$\int_{\sigma} x \, dz = \int_{0}^{1} t \, (1+i) \, dt = \frac{1+i}{2}.$$

(2) (a) Mediante calcolo diretto. Consideriamo la parametrizzazione $\gamma(t)$ Re^{it} per $t \in [0, 2\pi)$. Si ottiene:

$$\begin{split} \int_{\{|z|=R\}} x \, dz &= \int_0^{2\pi} (R \cos t) (Rie^{it}) \, dt = \\ &= i R^2 \int_0^{2\pi} (\cos^2 t + i \sin t \cos t) \, dt = i \pi R^2, \end{split}$$

dove nell'ultimo passaggio abbiamo usato che $\int_0^{2\pi} \cos^2 t \, dt = \pi$ e $\int_0^{2\pi} \cos t \sin t \, dt =$

(b) Usando la sostituzione suggerita, si ottiene:

$$\begin{split} \int_{\{|z|=R\}} x \, dz &= \int_{\{|z|=R\}} \frac{1}{2} \left(z + \frac{R^2}{z} \right) \, dz = \\ &= \frac{1}{2} \int_{\{|z|=R\}} z \, dz + \frac{R^2}{2} \int_{\{|z|=R\}} \frac{1}{z} \, dz = \\ &= 0 + R^2 i \pi \, \operatorname{Ind}_0(\{|z|=R\}) = \\ &= i \pi R^2. \end{split}$$

dove nel penultimo passaggio è stato usato il teorema di Cauchy e nell'ultimo passaggio il fatto che l'indice $\operatorname{Ind}_0(\{|z|=R\})=1$.

(3) Osserviamo che:

$$\begin{split} \int_{\{|z|=2\}} \frac{dz}{z^2 - 1} &= \frac{1}{2} \left(\int_{\{|z|=2\}} \frac{dz}{z - 1} - \int_{\{|z|=2\}} \frac{dz}{z + 1} \right) = \\ &= \pi i \left[\operatorname{Ind}_1(\{|z|=2\}) - \operatorname{Ind}_{-1}(\{|z|=2\}) \right] = \\ &= 0, \end{split}$$

dove nell'ultimo passaggio abbiamo usato il fatto che $\mathrm{Ind}_1(\{|z|=2\})=\mathrm{Ind}_{-1}(\{|z|=2\})=1.$

- (4) Se $n \leq 0$, tale integrale è uguale a zero, come segue immediatamente dal teorema di Cauchy su dischi.
 - Se n > 0, applichiamo la formula di Cauchy su dishi. Derivando (n-1) volte entrambi i membri, otteniamo:

$$f^{(n-1)}(z) = \frac{(n-1)!}{2\pi i} \int_{\{|z|=1\}} \frac{f(\zeta)}{(\zeta-z)^n} d\zeta.$$

Quindi:

$$\int_{\{|z|=1\}} \frac{e^z}{z^n} dz = \frac{2\pi i}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} \left[e^z \right]_{|z=0} = \frac{2\pi i}{(n-1)!} .$$

(5) Si procede in maniera analoga a quanto fatto in (3), usando un trucco analogo a quello suggerito nell'integrale (2). Otteniamo:

$$\begin{split} \frac{1}{|z-a|^2} &= \frac{1}{(z-a)(\overline{z}-\overline{a})} = \frac{1}{(z-a)(\frac{\rho^2}{z}-\overline{a})} = \\ &= \frac{z}{(z-a)(\rho^2-\overline{a}z)} = \\ &= \frac{1}{\rho^2-|a|^2} \left(\frac{a}{z-a} + \frac{\rho^2}{\rho^2-\overline{a}z}\right). \end{split}$$

Quindi:

$$\begin{split} \int_{\{|z|=\rho\}} \frac{dz}{|z-a|^2} &= \int_{\{|z|=\rho\}} \frac{1}{\rho^2 - |a|^2} \left(\frac{a}{z-a} + \frac{\rho^2}{\rho^2 - \overline{a}z} \right) dz = \\ &= \frac{a}{\rho^2 - |a|^2} \int_{\{|z|=\rho\}} \frac{dz}{z-a} - \frac{\rho^2}{\overline{a}(\rho^2 - |a|^2)} \int_{\{|z|=\rho\}} \frac{dz}{z - \frac{\rho^2}{\overline{a}}} = \\ &= \frac{2\pi i \, a}{\rho^2 - |a|^2} \mathrm{Ind}_a \left(\{|z|=\rho\} \right) - \frac{2\pi i \, \rho^2}{\overline{a}(\rho^2 - |a|^2)} \mathrm{Ind}_{\frac{\rho^2}{\overline{a}}} \left(\{|z|=\rho\} \right) = (*). \end{split}$$

Osserviamo che se $|a| < \rho$, allora $\left|\frac{\rho^2}{\overline{a}}\right| > \rho$ e vice-versa. Quindi nell'espressione (*) solo uno dei due indici è non nullo ed è uguale ad 1. In conclusione:

- se $|a| < \rho$, si ottiene : $(*) = \frac{2\pi i a}{|\rho^2 |a|^2|}$;
- Se $|a| > \rho$, si ottiene: $\frac{2\pi i \rho^2}{\overline{a}|\rho^2 |a|^2|}$.
- (6) Procedendo esattamente come in (4), otteniamo:
 - se $n \le 0$, allora $\int_{\{|z|=1\}} \frac{\sin z}{z^n} dz = 0$ (teorema di Cauchy);
 - se n > 0, usando la formula di rappresentazione di Cauchy e quanto osservato nell'esercizio (4):

$$\int_{\{|z|=1\}} \frac{\sin z}{z^n} dz = \frac{2\pi i}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} \left(\sin z\right)_{|z=0}.$$

In particolare:

- se n > 0 ed n dispari, allora $\int_{\{|z|=1\}} \frac{\sin z}{z^n} dz = 0$; - se n > 0 ed $n \equiv 2 \pmod{4}$, allora $\int_{\{|z|=1\}} \frac{\sin z}{z^n} dz = \frac{2\pi i}{(n-1)!}$; - se n > 0 e $n \equiv 0 \pmod{4}$, allora $\int_{\{|z|=1\}} \frac{\sin z}{z^n} dz = -\frac{2\pi i}{(n-1)!}$.
- (7) Distinguiamo vari casi:
 - se $n \ge 0$ e $m \ge 0$, allora $\int_{\{|z|=2\}} z^n (1-z)^m dz = 0$ (teorema di Cauchy).
 - Se $n \ge 0$ e m < 0, allora (usiamo la formula di rappresentazione di Cauchy, come nell'esercizio (4)):

$$\int_{\{|z|=2\}} z^n (1-z)^m dz = \int_{\{|z|=2\}} \frac{z^n}{(1-z)^{|m|}} dz =$$

$$= (-1)^{|m|} \int_{\{|z|=2\}} \frac{z^n}{(z-1)^{|m|}} dz =$$

$$= (-1)^{|m|} \frac{2\pi i}{(|m|-1)!} \frac{d^{|m|-1}}{dz^{|m|-1}} (z^n)_{|z=1} =$$

$$= \begin{cases} 0 & \text{se } |m| > n+1 \\ (-1)^m 2\pi i \begin{pmatrix} n \\ |m|-1 \end{pmatrix} & \text{se } |m| \le n+1. \end{cases}$$

• Se n < 0 e $m \ge 0$, allora analogamente a quanto fatto nel precedente caso:

$$\int_{\{|z|=2\}} z^n (1-z)^m dz = \int_{\{|z|=2\}} \frac{(1-z)^m}{z^{|n|}} dz =$$

$$= \frac{2\pi i}{(|n|-1)!} \frac{d^{|n|-1}}{dz^{|n|-1}} [(1-z)^{|m|}]_{|z=0} =$$

$$= \begin{cases} 0 & \text{se } |n| > m+1 \\ (-1)^{n-1} 2\pi i \begin{pmatrix} m \\ |n|-1 \end{pmatrix} & \text{se } |n| \le m+1. \end{cases}$$

• Consideriamo ora il caso n < 0 e m < 0. Invece di integrare lungo la circonferenza $\mathcal{C} = \{|z| = 2\}$, consideriamo i cammini ottenuti unendo alla circonferenza il segmento contenuto nella retta $x = \frac{1}{2}$. Consideriamo ora i due cammini chiusi ottenuti in questo modo \mathcal{C}_0 e \mathcal{C}_1 , orientati positivamente (come in figura).

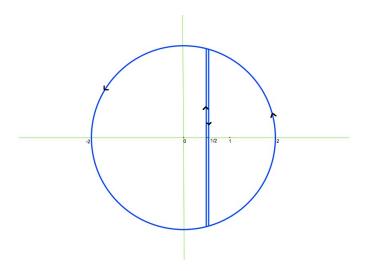


Figure 1

Questi due cammini hanno in comune tale segmento (percorso in verso opposto), quindi:

$$\int_{\mathcal{C}} z^n (1-z)^m dz = \int_{\mathcal{C}_0} z^n (1-z)^m dz + \int_{\mathcal{C}_1} z^n (1-z)^m dz.$$

Osserviamo che ciascuno di questi cammini contiene nella propria regione interna una sola singolarità. Denotiamo con \mathcal{C}_0 il cammino che contiene z=0 nella sua regione interna e con \mathcal{C}_1 quello che contiene z=1 nella sua regione interna.

In questo modo, si può applicare la formula di Cauchy a ciascuno dei due integrali:

$$\begin{split} \int_{\mathcal{C}} z^{n} (1-z)^{m} \, dz &= \int_{\mathcal{C}_{0}} z^{n} (1-z)^{m} \, dz + \int_{\mathcal{C}_{1}} z^{n} (1-z)^{m} \, dz = \\ &= \int_{\mathcal{C}_{0}} \frac{\frac{1}{(1-z)^{|m|}}}{z^{|n|}} \, dz + \int_{\mathcal{C}_{1}} \frac{\frac{1}{z^{|n|}}}{(1-z)^{|m|}} \, dz = \\ &= \int_{\mathcal{C}_{0}} \frac{\frac{1}{(1-z)^{|m|}}}{z^{|n|}} \, dz + (-1)^{|m|} \int_{\mathcal{C}_{1}} \frac{\frac{1}{z^{|n|}}}{(z-1)^{|m|}} \, dz = \\ &= \frac{2\pi i}{(|n|-1)!} \frac{d^{|n|-1}}{dz^{|n|-1}} \left(\frac{1}{(1-z)^{|m|}}\right)_{|z=0} + \frac{2\pi i (-1)^{|m|}}{(|m|-1)!} \frac{d^{|m|-1}}{dz^{|m|-1}} \left(\frac{1}{z^{|n|}}\right)_{|z=1} \\ &= 2\pi i \left\{ \left(\begin{array}{c} |m|+|n|-2\\ |n|-1 \end{array}\right) - \left(\begin{array}{c} |m|+|n|-2\\ |m|-1 \end{array}\right) \right\}. \end{split}$$