AM310-2012: RECUPERO I ESONERO

TEMA 1. Sia X un insieme.

- 1.1. Dare la definizione di misura esterna μ su X, la definizione di sottoinsieme μ misurabile di X e descrivere le principali proprietá della classe dei misurabili Σ_{μ} e della restrizione di μ a Σ_{μ} . Dimostrare infine che

(i)
$$E_j \in \Sigma_{\mu}$$
, $E_j \subset E_{j+1}$ $\forall j \Rightarrow \mu(E_j) \rightarrow \mu(\bigcup_{j=1}^{+\infty} E_j)$
(ii) $E_j \in \Sigma_{\mu}$, $E_{j+1} \subset E_j$ $\forall j$, $\mu(E_1) < +\infty \Rightarrow \mu(E_j) \rightarrow \mu(\bigcap_{j=1}^{+\infty} E_j)$

1.2. Dare la definizione di misure di Lebesgue L^n e di Hausdorff $H^s, s \geq 0$ in \mathbf{R}^n e mostrare che le misure di Hausdorff sono Boreliane regolari. Enunciare le proprietá salienti delle misure di Hausdorff e dimostrarne qualcuna.

Infine, provare o disprovare le seguenti affermazioni:

- (k) Sia $\mu = L^n$ in 1.1 (i). Allora gli E_i si possono prendere anche non misurabili
- (kk) Sia $\mu = L^n$ in 1.1 (ii). Allora gli E_i si possono prendere anche non misurabili

1.3. Dato
$$P \subset \mathbf{R}^n \times \mathbf{R}^m$$
, sia $\mu(P) := \inf\{\sum_j L^n(A_j)L^m(B_j): P \subset \cup_j (A_j \times B_j), A_j \subset \mathbf{R}^n, B_j \subset \mathbf{R}^m \text{ Lebesgue misurabili}\}$

Provare che μ é una misura esterna su $\mathbf{R}^n \times \mathbf{R}^m$ e che se $A \subset \mathbf{R}^n, B \subset \mathbf{R}^m$ sono Lebesgue misurabili allora $A \times B$ é μ -misurabile.

TEMA 2. Sia Σ una σ algebra di sottoinsiemi di X.

2.1. Dare la definizione di funzione Σ -misurabile ed indicare le proprietá della classe delle funzioni Σ -misurabili. Provare la formula per $f \geq 0$, funzione Σ -misurabile:

$$\exists E_j \in \Sigma : \qquad f(x) = \sum_{j=1}^{\infty} \frac{1}{j} \chi_{E_j}(x) \qquad \forall x \in X$$

2.2. Sia μ misura su X, Σ_{μ} la classe dei misurabili. Dare la definizione di funzione μ -sommabile e mostrare che, se $f \geq 0$ é μ -sommabile, allora

$$\mu_f(E) := \int_X f \chi_E d\mu, \qquad E \in \Sigma_\mu$$

é misura su X, assolutamente continua rispetto a μ .

- 2.3. Sia $f: \mathbf{R}^n \to \mathbf{R}, \ s: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}^n, \ s(x,y) = x y$. Provare, o disprovare, le affermazioni:
- (1) Se f é borel misurabile allora $f \circ s$ é borel misurabile in $\mathbb{R}^n \times \mathbb{R}^n$
- (II) Se f é Lebesgue misurabile allora $f \circ s$ é Lebesgue misurabile in $\mathbb{R}^n \times \mathbb{R}^n$.

TEMA 3. Sia μ misura su X, $\mathcal{L}^p = \{f : f \in \mu$ -misurabile e $\int_X |f|^p d\mu < \infty \}$.

- 3.1. Siano 1 < p,q. Siano f,g μ -misurabili, $||f||_p := (\int_X |f|^p d\mu)^{\frac{1}{p}}$. Provare che
- (a) $\frac{1}{n} + \frac{1}{q} = 1 \implies \int_X |f g| \le ||f||_p ||g||_q$
- (b) $||f + g||_p \le ||f||_p + ||g||_p$ (c) $p \le r \le q, f \in \mathcal{L}^p \cap \mathcal{L}^q \implies f \in \mathcal{L}^r \text{ ed } \exists \theta \in [0, 1] : ||f||_r \le ||f||_p^\theta ||f||_q^{1-\theta}$
- 3.2 Sia $f \mu$ -misurabile e $||f||_{\infty} := \inf\{c \geq 0 : |f(x)| \leq c \text{ q.o. } x\}$. Provare che
- $\sup_{p\geq 1} \|f\|_p < +\infty \quad \Rightarrow \quad \|f\|_{\infty} < \infty$ $\|f\|_p < \infty \quad \text{per} \quad p \in \{1,\infty\} \quad \Rightarrow \quad \|f\|_p < \infty \quad \forall p > 1 \text{ e } \|f\|_p \to_{p\to\infty} \|f\|_{\infty}$ (e)
- 3.3. Siano $f_n: \mathbf{R}^n \to \mathbf{R}$ boreliane e tali che sup_n $\int_{\mathbf{R}^n} |f_n|^p < \infty$. Provare che

$$f_n \to f$$
 q.o., $\int_{\mathbf{R}^n} |f_n|^2 \to \int_{\mathbf{R}^n} |f|^2 \Rightarrow \int_{\mathbf{R}^n} |f_n - f|^2 \to 0$

TEMA 4. Sia μ misura su X.

- 4.1. Enunciare la diseguaglianza di Hanner e dedurre che, se $p>1, C\subset L^p$ $\forall h \in L^p, \quad \exists h_C \in C: \quad \|h - h_C\|_p \le \|h - g\|_p \quad \forall g \in C.$ so e convesso, allora
- 4.2. Mostrare come 4.1. permette di dimostrare che (assumendo L^p separabile) ogni successione limitata in L^p ammetta una sottosuccessione debolmente convergente.
- 4.3. Sia $p \ge 2$. Provare che:

$$||f_n||, ||g_n|| \le 1, \quad ||\frac{f_n + g_n}{2}||_p \to_n 1 \quad \Rightarrow \quad ||f_n - g_n||_p \to_n 0$$

e dedurre che

$$f_n \rightharpoonup_n f$$
, $||f_n||_p \rightarrow ||f||_p \Rightarrow ||f_n - f||_p \rightarrow 0$

TEMA 5.

5.1. Sia $E \subset \mathbb{R}^N$ Lebesgue misurabile e di misura finita. Provare, o disprovare, che

$$\forall \epsilon > 0, \quad \exists \varphi_{\epsilon} \in C_0(\mathbf{R}^N) : \quad \int_{\mathbf{R}^N} |\varphi_{\epsilon} - \chi_E| \leq \epsilon.$$

5.2. Sia $f \in L^1(\mathbf{R}^N)$. Provare, o disprovare, che

$$\exists f_j \in C_0 \text{ tali che } \int_{\mathbf{R}^N} |f - f_j| \to_j 0.$$

5.3. Provare, o disprovare, che

$$\int_{\mathbf{R}^N} |f| < \infty \Rightarrow \int_{\mathbf{R}^N} |f(x+h) - f(x)| dx \to_{|h| \to 0} 0.$$