AM310 2012: Tracce delle lezioni- 7

Ricordiamo che se E é normato e (Jx)(x') := x'(x) per ogni $x' \in E', x \in E$, allora $J: E \to (E')'$ é isometria lineare. In generale J non é suriettiva. E si dice riflessivo sse J' é suriettiva. É vero che (vedi Brezis, Proposizione III.13)

$$\exists x \in E : x'' = Jx \Leftrightarrow x'' \text{ \'e continuo rispetto alla topologia } \omega^*$$

Ricordiamo che se μ é misura σ -finita su (X, Σ) , $E = L^1(\mu)$, e posto, data $g \in L^{\infty}$, $Lg(f) := \int fg d\mu \quad \forall f \in L^1$, allora $L: L^{\infty} \to E'$ é isometria suriettiva. Sia $L': (E')' \to (L^{\infty})'$ il duale di L, ovvero $L'l(g) = l(Lg) \quad \forall l \in (E')', \ g \in L^{\infty}$, ovvero $L'l = l \circ L$. É facile vedere che anche L' é isometria suriettiva. Dunque, dire che L^1 non é riflessivo equivale a dire che (l'isometria lineare) $L' \circ J$ non é suriettiva. Notiamo che

$$\langle (L' \circ J)(f), g \rangle_{(L^{\infty})', L^{\infty}} = \langle Jf, Lg \rangle = (Lg)(f) = \int fg \quad \forall f \in L^{1}, g \in L^{\infty}$$

Dunque, l = Jf, $f \in L^1$ sse $\Lambda := L'l = (L' \circ J)(f)$ ovvero $\Lambda(g) = \int fg \quad \forall g \in L^{\infty}$. Vogliamo ora mostrare che

$$\exists f \in L^1: \quad \Lambda(g) = \int fg \quad \Leftrightarrow \quad [g_n \in L^\infty, \int g_n h d\mu \to 0 \quad \forall h \in L^1 \Rightarrow \quad \Lambda(g_n) \to 0]$$
 cioé $\Lambda \in \Im(L' \circ J)$ sse Λ é (anche solo sequenzialmente) ω^* continuo.

- \Rightarrow Ovvio, giacché $\Lambda(g_n) = \int fg_n$ per qualche $f \in L^1$.
- \Leftarrow Proviamolo nell'ipotesi Λ é positivo, cioé $f \geq 0 \Rightarrow \Lambda(f) \geq 0$. Intanto

$$0 \le \varphi_j \le \varphi_{j+1} \le g, \quad g \in L^{\infty}(\mu) \quad \varphi_j(x) \to g(x) \quad \forall x \qquad \stackrel{Leb}{\Rightarrow}$$

$$\int \varphi_j h d\mu \to_j \int g h d\mu \quad \forall h \in L^1 \quad \Rightarrow \quad \Lambda(\varphi_j) \to \Lambda(g) \tag{*}$$

In particolare, (certi funzionali lineari sono misure:) $\mu_l(E) := \Lambda(\chi_E), E \in \Sigma$ é misura perché $E_i \in \Sigma, E_i \cap E_j = \emptyset \ \forall i \neq j \Rightarrow$

$$\sum_{j=1}^{n} \mu_{l}(E_{j}) = \sum_{j=1}^{n} \Lambda(\chi_{E_{j}}) = \Lambda(\chi_{\cup_{j \leq n} E_{j}}) \to_{n} \Lambda(\chi_{\cup_{j} E_{j}}) = \mu_{l}(\cup_{j=1}^{\infty} E_{j})$$

Ora, per linearitá, $\Lambda(\varphi) = \int \varphi d\mu_l$ se $\varphi = \sum_{j=1}^n c_j \chi_{E_j}$. Poi, se φ_j sono come in (*), é anche $\int \varphi_j d\mu_l \to_j \int g d\mu_l$, e siccome $\Lambda(\varphi_j) \to \Lambda(g)$, concludiamo che $\Lambda(g) = \int g d\mu_l \quad \forall g \in L^{\infty}, \quad g \geq 0$. Infine, scrivendo $g = g^+ - g^-$, concludiamo che

$$\Lambda(g) = \int g d\mu_l \qquad \forall g \in L^{\infty}(\mu)$$

Il fatto che $\exists f \in L^1(\mu) : \quad \Lambda(g) = \int fg \, d\mu \quad \forall g \in L^\infty(\mu)$ segue allora dal

TEOREMA DI RADON-NIKODYM

Sia $\Sigma \subset \mathcal{P}(X)$ sigma algebra; siano $\nu, \mu : \Sigma \to [0, +\infty]$ misure con $\nu(X) < \infty$ e μ σ -finita ($cio\acute{e} X = \cup_j E_j, E_j \in \Sigma, E_j \subset E_{j+1}, \quad \mu(E_j) < \infty$). Allora $\exists f \in L^1(X, \mu), \ \exists Z \in \Sigma \ con \ \mu(Z) = 0 \ tali \ che$

$$\nu(E) = \int_{E} f d\mu + \nu(E \cap Z) \quad \forall E \in \Sigma$$

Prova. Sia $\lambda(E) := \mu(E) + \nu(E)$, $E \in \Sigma$, per cui per ogni φ semplice e non negativa, $\int \varphi \, d\lambda = \int \varphi \, d\mu + \int \varphi \, d\nu$ e quindi, per ogni h Σ -misurabile

$$\int |h| \, d\lambda = \int |h| \, d\mu + \int |h| \, d\nu \qquad \int |h| \, d\lambda \ge \int |h| \, d\mu, \qquad \int |h| \, d\lambda \ge \int |h| \, d\nu$$

In particolare, $L^1(\lambda) \subset L^1(\nu)$ e $h \to \int h \, d\nu$ é continuo in $L^1(\lambda)$ e quindi

(*)
$$\exists g \in L^{\infty}(\lambda) : \int h \, d\nu = \int g \, h \, d\lambda \quad \forall h \in L^{1}(\lambda)$$

Inoltre,
$$\lambda(E) > 0 \Rightarrow \frac{1}{\lambda(E)} \int_{E} g \, d\lambda = \frac{1}{\lambda(E)} \int_{E} \chi_{E} \, d\nu = \frac{\nu(E)}{\lambda(E)} \in [0, 1] \Rightarrow 0 \leq g \leq 1 \qquad \lambda - q.o.$$

Iteriamo ora (*):

$$(**) \qquad \int h \, d\nu = \int g \, h \, d\lambda = \int g h \, d\mu + \int g^2 \, h \, d\lambda = \int (g + g^2) h \, d\mu + \int g^2 \, h \, d\nu$$
$$= \dots = \int (g + g^2 + \dots + g^n) \, h \, d\mu + \int g^n \, h \, d\nu \qquad \forall h \in L^1(\lambda)$$

In particulare, posto $h \equiv \chi_{E_j}$ in (**), vediamo che $\nu(X) \ge \int (\sum_n g^n) \chi_{E_j} d\mu$

e quindi
$$\sum_n g^n(x) < +\infty \quad \mu - q.o. \quad \text{e} \quad \mu(\{g=1\}) = 0$$

Poniamo $f := \sum_n g^n \in L^1(\mu)$ $Z := \{g = 1\}$. Fissata in (**) h limitata e in $L^1(\lambda)$, passando al limite (usando il teorema sulla convergenza dominata) troviamo $\int h \, d\nu = \int h \, f \, d\mu + \int h \, d\nu$. per ogni h limitata e in $L^1(\lambda)$.

Sia infine h soltanto limitata (e misurabile). Allora $\int h \chi_{E_j} d\nu = \int h \chi_{E_j} f d\mu + \int h \chi_{E_j} d\nu$ e passando al limite in j (usando il teorema sulla convergenza dominata) otteniamo

$$\int h \, d\nu = \int h \, f \, d\mu + \int_Z h \, d\nu \qquad \forall h \quad \text{misurabile e limitata}$$

Misure assolutamente continue misure singolari e Teorema di decomposizione di Lebesgue.

Siano μ, ν misure (σ -finita, finita) definite sulla σ -algebra $\Sigma \subset \mathcal{P}(X)$:

 $\nu \prec \prec \mu$ (ν é assolutamente continua rispetto a μ) se $\mu(E) = 0 \Rightarrow \nu(E) = 0$. ν é singolare rispetto a μ ($\nu \perp \mu$) $\Leftrightarrow \exists Z \in \Sigma : \mu(Z) = 0, \nu(Z^c) = 0$

É vero che : $\exists \nu_{ac} \prec \prec \mu, \ \nu_s \perp \mu \text{ unicamente determinate} : \ \nu = \nu_{ac} + \nu_s$

Che tale decomposizione esista segue dal Teorema di Radon-Nikodym:

$$\exists h \in L^1_\mu, \quad Z \in \Sigma, \quad \mu(Z) = 0: \qquad \nu(E) = \int_E h d\mu + \nu(Z \cap E) = \nu_{ac}(E) + \nu_s(E)$$

$$\nu_{ac}(E) := \int_E h d\mu, \qquad \nu_s(E) := \nu(Z \cap E)$$

L'unicitá é poi facile da verificare.

Ricordiamo che μ (in \mathbb{R}^n) é di Radon se é borel regolare e finita sui compatti:

(Regolaritá 1) $\mu(A) = \inf \{ \mu(O) : A \subset O, O \ aperto \} \quad \forall A \subset \mathbf{R}^n$

(Regolaritá 2) $\mu(B) = \sup\{\mu(K) : K \subset B, K \text{ compatto}\} \quad \forall B \subset \mathbf{R}^n \text{ boreliano}$ (finitezza locale) $\mu(B_r) < \infty \quad \forall r > 0$

IL TEOREMA DI RAPPRESENTAZIONE DI RIESZ

Sia l' funzionale lineare su $C_0(\mathbf{R}^N)$ tale che $l(\varphi) \ge 0$ se $\varphi \ge 0$. Allora

$$\exists \quad \mu \quad \text{misura di Radon tale che} \qquad l(\varphi) = \int_{\mathbf{R}^N} \varphi \, d\mu \qquad \forall \varphi \in C_0(\mathbf{R}^N)$$

Lemma. $\forall r > 0 \quad \exists c_r : \quad supp \ \varphi \subset B_r \quad \Rightarrow \quad |l(\varphi)| \leq c_r \ \|\varphi\|_{\infty}$

Infatti, sia $\psi \in C_0(\mathbf{R}^N)$ tale che $0 \le \psi \le 1$ con $supp \ \psi \subset B_{2r}$ e $\psi \equiv 1$ in B_r . Allora $\|\varphi\|_{\infty} \ \psi \ge \varphi \ge -\|\varphi\|_{\infty} \ \psi$ \Rightarrow

$$-\|\varphi\|_{\infty} \, l(\psi) = -l(\|\varphi\|_{\infty} \, \psi) \leq l(\varphi) \leq \, l(\|\varphi\|_{\infty} \, \psi) = \|\varphi\|_{\infty} \, l(\psi)$$

Concludiamo che $|l(\varphi)| \leq ||\varphi||_{\infty} l(\psi)$.

Prova del Teorema. Sia

$$\mu(\Omega) := \sup\{l(\varphi) : \varphi \in C_0(\mathbf{R}^N), \ 0 \le \varphi \le 1, \ supp \ \varphi \subset \Omega\}, \ \forall \Omega \subset \mathbf{R}^N, \ \text{aperto}$$
$$\mu(A) := \inf\{\sum_j \mu(\Omega_j) : A \subset \cup_j \Omega_j \quad \Omega_j \subset \mathbf{R}^N \quad \text{aperti}\}$$

Passo 1. μ é misura (ovvero, é numerabilmente subadditiva)

Passo 2. μ é misura di Radon (ovvero é Borel regolare, finita sui compatti)

Passo 3. $l(\varphi) = \int_{\mathbf{R}^N} \varphi \, d\mu \quad \forall \varphi \in C_0(\mathbf{R}^N).$

Prova passo 1. Siano $\Omega \subset \bigcup_j \Omega_j$ aperti, $K := supp \ \varphi \subset \Omega$. Siccome K é compatto, esiste n tale che $K \subset \bigcup_{j=1}^n \Omega_j$. Sia ψ_j partizione dell'unitá:

$$0 \le \psi_j \le 1$$
, $supp \, \psi_j \subset \Omega_j$, $\sum_{j=1}^n \psi_j(x) = 1 \quad \forall x \in K$

$$\acute{\mathbf{E}} \quad l(\varphi) = l(\sum_{j=1}^{n} \phi \psi_j) = \sum_{j=1}^{n} l(\phi \psi_j) \leq \sum_{j=1}^{\infty} \mu(\Omega_j) \qquad (\text{perch\'e} \quad supp \, \psi_j \subset \Omega_j)$$

e quindi $\mu(\Omega) \leq \sum_{j} \mu(\Omega_{j})$. In particolare $\mu(A) = \inf{\{\mu(\Omega) : A \subset \Omega\}}$.

Sia ora $A \subset \bigcup_i A_i$. Possiamo supporre $\mu(A_i) < +\infty \quad \forall i$. Sia $A_i \subset \bigcup_j \Omega_{ij}$ e

$$\mu(A_i) + \frac{\epsilon}{2^i} \ge \sum_j \mu(\Omega_{ij})$$

Allora $\epsilon + \sum_{i} \mu(A_i) \ge \sum_{ij} \mu(\Omega_{ij}) \ge \mu(A)$.

Prova passo 2. Proviamo che μ é misura metrica, e quindi boreliana. Se $\Omega_i, i = 1, 2$ sono aperti disgiunti e $supp \ \varphi_i \subset \Omega_i, \quad 0 \leq \varphi_i \leq 1$ allora $supp \ [\varphi_1 + \varphi_2] \subset \Omega_1 \cup \Omega_2$ e $0 \leq \varphi_1 + \varphi_2 \leq 1$ e quindi

$$l(\varphi_1) + l(\varphi_2) = l(\varphi_1 + \varphi_2) \le \mu(\Omega_1 \cap \Omega_2)$$
 e quindi $\mu(\Omega_1) + \mu(\Omega_2) \le \mu(\Omega_1 \cap \Omega_2)$

Allora, se $d(A_1, A_2) > 0$, esistono Ω_i aperti disgiunti tali che $A_i \subset \Omega_j$ e quindi, se $A_1 \cup A_2 \subset \Omega$ aperto, risulta

$$\mu(\Omega) \ge \mu([\Omega \cap \Omega_1] \cup [\Omega \cap \Omega_2]) = \mu(\Omega \cap \Omega_1) + \mu(\Omega \cap \Omega_2) \ge \mu(A_1) + \mu(A_2)$$

Passando all'inf: $\mu(A_1 \cup A_2) \ge \mu(A_1) + \mu(A_2)$ e quindi μ é misura metrica. Poi , μ é Borel regolare, perché $\mu(A) = \mu(\cap \Omega_j)$ se $\mu(A) < +\infty, \mu(A) + \frac{1}{j} \ge \mu(\Omega_j)$.

Infine, $\mu(B_r) < +\infty$ $\forall r > 0$ perché, per il Lemma, $\varphi \in C_0(B_r) \Rightarrow 0 \le l(\varphi) \le c_r \|\varphi\|_{\infty} \Rightarrow \mu(B_r) \le c_r$.

Prova passo 3. Basta provare che $l(\varphi) \leq \int_{\mathbf{R}^N} \varphi \, d\mu \quad \forall \varphi \in C_0(\mathbf{R}^N)$ perché é allora anche $l(-\varphi) \leq \int_{\mathbf{R}^N} [-\varphi] \, d\mu$ e quindi $l(\varphi) = \int_{\mathbf{R}^N} \varphi \, d\mu \quad \forall \varphi \in C_0(\mathbf{R}^N)$.

Sia $K := supp \varphi \in C_0(\mathbf{R}^N)$. Fissato $\epsilon > 0$, siano

$$t_0 < \min \varphi < t_1 \dots < t_n = \max \varphi$$
 tali che $t_j - t_{j-1} \le \epsilon \quad \forall j$

 $E_j := \varphi^{-1}((t_{j-1}, t_j)) \cap K \subset \Omega_j : \quad \mu(\Omega_j) \leq \mu(E_j) + \frac{\epsilon}{n}, \quad \varphi(x) \leq t_j + \epsilon \quad \forall x \in \Omega_j, \quad \forall j$ Notiamo che gli E_j sono disgiunti e $K = \bigcup_j E_j$. Sia ψ_j partizione dell'unitá:

$$0 \le \psi_j \le 1$$
, $supp \ \psi_j \subset \Omega_j$, $\sum_j \psi_j(x) = 1 \quad \forall x \in K$

e quindi $\varphi \equiv \sum_{i} \varphi \ \psi_{i}$ e $\varphi \ \psi_{j} \leq (t_{j} + \epsilon) \psi_{j}$. Allora,

$$l(\varphi) = \sum_{j=1}^{n} l(\varphi \, \psi_j) \le \sum_{j=1}^{n} (t_j + \epsilon) l(\psi_j) \le$$

$$\leq \sum_{j=1}^{n} (t_j + \epsilon) \mu(\Omega_j) \leq \sum_{j=1}^{n} (t_j + \epsilon) \left[\mu(E_j) + \frac{\epsilon}{n} \right] =$$

$$= \sum_{j=1}^{n} (t_j + \epsilon) \mu(E_j) + \sum_{j=1}^{n} (t_j + \epsilon) \frac{\epsilon}{n} = \sum_{j=1}^{n} (t_j - \epsilon) \mu(E_j) + 2\epsilon \mu(K) + \epsilon (\sup \varphi + \epsilon) \le$$

$$\leq \sum_{j=1}^{n} \int_{\Gamma} \varphi \, d\mu + \epsilon [2\mu(K) + \sup \varphi + \epsilon] =$$

perché $t_j - \epsilon < t_{j-1} < \varphi(x) \quad \forall x \in E_j$. Concludendo

$$l(\varphi) \le \int_{\mathbf{R}^N} \varphi \, d\mu + \epsilon [2\mu(K) + \sup \varphi + \epsilon] \qquad \forall \epsilon > 0.$$

NOTA. Esattamente come per la misura di Lebesgue si vede che

$$\forall E$$
 boreliano $\mu(E) = \sup\{\mu(K) : K \subset E, K \text{ compatto}\}\$

Ció comporta l'**unicitá di** μ :

se $l(\varphi) = \int \varphi d\nu = \int \varphi d\mu$ $\forall \varphi \in C_0(\mathbf{R}^N)$, allora, dato un compatto K e preso un aperto Ω contenente K e tale che $\nu(K) + \epsilon \geq \nu(\Omega)$, e presa una $\varphi \in C_0(\mathbf{R}^N)$ tale che $0 \leq \varphi \leq 1$, $supp \varphi \subset \Omega, \varphi \equiv 1$ su K si ha

$$\mu(K) = \int_{K} d\mu \le \int \varphi d\mu = l(\varphi) = \int_{K} \varphi d\nu \le \nu(\Omega) \le \nu(K) + \epsilon$$

Convergenza debole e compattezza per misure di Radon

Definizione. Siano μ_n misure di Radon in \mathbf{R}^N . Diremo che

$$\mu_n \rightharpoonup \mu$$
 (converge debolmente a μ) se
$$\int_{\mathbf{R}^N} \varphi \, d\mu_n \to \int_{\mathbf{R}^N} \varphi \, d\mu \quad \forall \varphi \in C_0(\mathbf{R}^N)$$

Esempio. (i) Siano $0 \le f_n$, $f_n \in L^1(\mathbf{R}^N)$, $\mu_n(E) := \int_E f_n dx$, E boreliano. Allora $\mu_n \rightharpoonup \mu \iff \int_{\mathbf{R}^N} f_n \ \varphi dx \to \int_{\mathbf{R}^N} \varphi d\mu$, $\forall \varphi \in C_0(\mathbf{R}^N)$.

(ii) Sia
$$f \in C_0^{\infty}(\mathbf{R}^N)$$
, $\int |f| = 1$, $f_n(x) := n^N |f(nx)|$, $\mu_n(E) := \int_{\mathbf{R}^N} f_n dx$.
Allora $\mu_n \rightharpoonup \delta_0$, ove $\delta_0(E) = 1$ se $0 \in E$ e $\delta_0(E) = 1$ se $0 \notin E$.

Teorema Siano μ_n misure di Radon tali che $\sup_n \mu_n(B_R) < +\infty \ \forall R.$ Allora

$$\exists n_k, \mu : \quad \mu_{n_k} \rightharpoonup_k \mu$$

Prova. Dal Teorema di approssimazione di Weierstrass segue che esiste un insieme numerabile $D \subset C_0^{\infty}(\mathbf{R}^N)$ tale che

 $\forall \varphi \in C_0(\mathbf{R}^N), \quad \exists R > 0, \quad \exists \varphi_n \in D \cap C_0(B_R) \quad \text{tale che} \quad \|\varphi_n - \varphi\|_{\infty} \to_n 0$ Dall'ipotesi segue che $\forall \varphi \in C_0(\mathbf{R}^N), \quad \sup_n |\int_{\mathbf{R}^N} \varphi \ d\mu_n| < +\infty \quad \text{e}$ quindi l'argomento diagonale di Cantor assicura che

$$\exists \mu_{n_k} : \quad l(\varphi) := \lim_k \int_{\mathbf{R}^N} \varphi \, d\mu_{n_k} \qquad \text{esiste finito} \quad \forall \varphi \in < D >$$

e, ovviamente, l é lineare e positivo e quindi

$$\forall R > 0, \quad \exists c_R : \qquad |l(\varphi)| < c_R ||\varphi||_{\infty} \quad \forall \varphi \in C_0(B_R)$$

Ció implica che, se $\varphi_n \in C_0(B_R) \cap \langle D \rangle$, $\|\varphi_n - \varphi\|_{\infty} \to_n 0$ allora $\lim_n l(\varphi_n)$ esiste finito e dipende solo da φ , ovvero l si estende a un funzionale lineare e positivo su $C_0(\mathbf{R}^N)$. In virtú del Teorema di Riesz esiste una misura di Radon μ tale che

$$l(\varphi) = \int_{\mathbf{R}^N} \varphi \, d\mu = \lim_k \int_{\mathbf{R}^N} \varphi \, d\mu_{n_k} \quad \forall \varphi \in \langle D \rangle$$

Da ció segue facilmente che la convergenza ha infatti luogo su tutto $C_0(\mathbf{R}^N)$.

Esercizi e problemi 6

Esercizio 1. Provare che l^{∞} non é separabile. Trovare una successione $l_n \in (l^{\infty})'$ limitata, che non ha estratte debole* convergenti.

Esercizio 2. Sia $c_0 := \{x \in l^\infty : x(j) \to_i 0\}$.

(i) Provare che c_0 é sottospazio lineare chiuso di l^{∞} e che

$$\forall a \in l^{\infty}, \quad \exists a_n \in c_0: \qquad a_n \rightharpoonup^* a$$

(non é in particolare vero che $x_n \in C \subset l^{\infty}$ chiuso e convesso, $x_n \rightharpoonup^* x$ in $l^{\infty} \Rightarrow x \in C$).

- (ii) Sia $h \in l^1$. Posto $l_h(x) := \int_{\mathbf{N}} h \ x = \sum_j h(j) \ x(j) \quad \forall x \in c_0$, provare che $Lh := l_h$ é una isometria lineare suriettiva di l^1 su $(c_0)'$ (l^1 é il duale di c_0 ...ma c_0 non é il duale di l^1 !).
- (iii) Mostrare con un esempio che non tutte le successioni limitate in c_0 hanno estratte debolmente convergenti.

Esercizio 3. Provare che

$$x_n \in l^1, \quad x_n \rightharpoonup_n x \quad \Rightarrow \quad ||x_n - x||_1 \to_n 0$$

Esercizio 4. Sia f misurabile. Provare che

- (i) $\sup_{p\geq 1} \|f\|_p < +\infty \implies f \in L^{\infty}$
- (ii) $f \in L^1 \cap L^\infty \implies f \in L^p \quad \forall p > 1 \in \|f\|_p \to \|f\|_\infty$

Esercizio 5. Sia $l(\varphi) = \int_{\mathbf{R}^N} \varphi \, d\nu$, ν misura di Radon.

Supponiamo che l si prolunghi a tutto $L^{\infty}(\mathbf{R}^N, dx)$ in un funzionale della forma $\int_{\mathbf{R}^N} \varphi f dx$ con $f \in L^1(\mathbf{R}^N)$.

Provare che ν é assolutamente continua rispetto alla misura di Lebesgue.

CENNI DI SOLUZIONI

Esercizio 1. Sia $A := \{x : \mathbf{N} \to \{0,1\}\} = 2^{\mathbf{N}}$. Come noto, A non é numerabile (ha la potenza del continuo). Siccome

$$x, y \in A, \quad x \neq y \quad \Rightarrow \quad \|x - y\|_{\infty} = 1$$

esiste in l^{∞} una famiglia non numerabile di palle disgiunte: un insieme denso in l^{∞} , dovendo intersecare ciascuna di tali palle, non puó dunque essere numerabile.

Sia
$$l_n(x) := x(n) \quad \forall x \in l^{\infty}$$
. É
$$|l_n(x)| = |x(n)| \le \sup_j |x(j)| = ||x||_{\infty} \quad \text{e quindi} \quad ||l_n|| = 1$$

(infatti, se $e_n(j) := 0$ se $j \neq n$ e $e_n(n) := 1$, allora $l_n(e_n) = 1$). Siccome $l_{n_k} \rightharpoonup^* l \Leftrightarrow x(n_k) = l_{n_k}(x) \to l(x)$ implica, in particolare, che $x(n_k)$ converge, tale l non puó esistere perché, quale che sia la selezione n_k esiste una successione limitata x tale che la $k \to x(n_k)$ non converga.

Esercizio 2. (i) Chiaramente,

$$x_n(j) \to_j 0 \quad \forall n, \quad \sup_j |x_n(j) - x(j)| \to_n 0 \quad \Rightarrow$$

$$|x(j)| \le |x(j) - x_n(j)| + |x_n(j)| \le 2\epsilon$$

se $n = n_{\epsilon}$ é abbastanza grande e $j \geq j(n_{\epsilon})$, ovvero $x \in c_0$ e quindi c_0 é chiuso in l^{∞} .

Ricordiamo qui che, pensato **N** munito della misura che conta, i corrispondenti L^p si indicano l^p . In particolare, l^{∞} é il duale di l^1 :

$$\forall h \in l^{\infty}, \quad l_h(x) := \int_{\mathbf{N}} h \, x = \sum_{j=1}^{\infty} h(j) \, x(j) \quad \forall x \in l^1, \quad e \quad Lh := l_h$$

é isometria lineare suriettiva di l^{∞} su $(l^{1})'$. Esempio: se $b_{n}:=\chi_{\{1,\ldots,n\}},\quad b_{n}\in c_{0}$ e $l_{b_{n}}(x):=\int_{\mathbf{N}}b_{n}\;x=\sum\limits_{j=1}^{n}\;x(j)$ $\forall x\in l^{1}$. Si ha $l_{b_{n}}(x)\to_{n}\sum\limits_{j=1}^{\infty}\;x(j)=\int_{\mathbf{N}}x=l_{\chi_{\mathbf{N}}}$ ovvero $b_{n}\rightharpoonup^{\star}\chi_{\mathbf{N}}\notin c_{0}$. Piú in generale, $\forall a\in\mathbf{N}$ e posto $a_{n}:=a\;b_{n}$, risulta

$$l_{a_n}(x) = \sum_j x(j) \ a_n(j) = \sum_{j=1}^n x(j) \ a(j) \to_n \sum_{j=1}^\infty x(j) \ a(j) = l_a(x) \quad \forall x \in l^1$$

ovvero $a_n \rightharpoonup^* a$ in l^∞ .

Se, per $h \in l^1$, $Lh := l_h$, $l_h(x) := \sum_j h(j) x(j)$, $Lh \notin \text{fun-}$ zionale lineare e continuo su l^{∞} e quindi anche su c_0 con $||l_h|| = ||h||_1$ $|l_h(x)| \le ||x||_{\infty} \sum_j |h(j)|$ e, viceversa, posto $x_n(j) := sign h(j) b_n(j)$ $x_n \in c_0$, $||x_n||_{\infty} = 1$ e quindi $||l_h|| \ge |l_h(x_n)| = \sum_{j=1}^n |h(j)|$

Suriettivitá di L. Sia $l \in (c_0)'$ e , posto $e_n := \chi_{\{n\}} \in c_0$, sia $h := (l(e_j))_{j \in \mathbf{N}}$. Intanto, $h \in l^1$, perché $\sum_{i=1}^{n} |h(j)| =$

$$l(\sum_{j=1}^{n} sign \ h(j) \ e_{j}) \leq ||l|| \ ||\sum_{j=1}^{n} sign \ h(j) \ e_{j}||_{\infty} \leq ||l|| \ \Rightarrow \ \sum_{j=1}^{\infty} |h(j)| \leq ||l|| < \infty$$

 $||x - b_n x||_{\infty} = \sup_{j > n+1} |x(j)| \to_n 0 \quad \forall x \in c_0$ Infine

$$l(x) = \lim_{n} l(x b_n) = \lim_{n} \left[\sum_{j=1}^{n} l(x(j)e_j) = \sum_{j=1}^{\infty} x(j) l(e_j) = l_h(x) \right]$$

Come in (ii): $b_n := \chi_{\{1,\dots,n\}} \rightharpoonup^{\star} \chi_{\mathbf{N}} \notin c_0$. In particolare, $l_{b_n}(e_j) \to_n 1$

Per assurdo (passando eventualmente ad una sottosuccessione)

 $\exists x_n \rightharpoonup 0 \text{ in } l^1 \text{ tale che } ||x_n||_1 \ge \delta > 0, \text{ e quindi, sostituendo } x_n \text{ con } \frac{x_n}{||x_n||_1}$

$$\exists x_n \rightharpoonup 0 \quad \text{con} \quad \|x_n\|_1 = 1 \quad \forall n \in \mathbf{N}$$

Da $x_n \to 0$ ovvero $\sum_i x_n(j) a(j) \to_n 0 \quad \forall a \in l^{\infty}$ segue, prendendo $a = \chi_{\{i\}}$,

$$x_n(i) \to_n 0 \quad \forall i \in \mathbf{N}$$

Quindi, per ogni fissato $m \in \mathbf{N}$, $\sum_{i \le m} |x_n(j)| > \frac{3}{4} \quad \forall n \ge n_m$

$$\sum_{i>m} |x_n(j)| > \frac{3}{4} \quad \forall n \ge n_m$$

Siano poi $k_1 < l_1$ tali che $\sum_{j=k_1}^{l_1} |x_1(j)| \ge \frac{3}{4}.$

$$\sum_{j=k_1}^{l_1} |x_1(j)| \ge \frac{3}{4}.$$

Detto $n_1 = 1$, sia n_2 tale che se $k_2 > l_1$ ed $l_2 > k_2$ é abbastanza grande risulti

$$\sum_{j=k_2}^{l_2} |x_{n_2}(j)| \ge \frac{3}{4}$$

Iterando, si costruisce una sottosuccessione tale che, se $k_i > l_{i-1}$ x_{n_i} ed l_i é abbastanza grande risulti

$$\forall i \in \mathbf{N} : \sum_{j=k_i}^{l_i} |x_{n_i}(j)| \ge \frac{3}{4} \text{ e quindi } \sum_{j< k_i} |x_{n_i}(j)| + \sum_{j>l_i} |x_{n_i}(j)| \le \frac{1}{4}$$

Se
$$a(j) = sign \ x_{n_i}(j) \ \forall j = k_i, \dots, l_i, \ \text{\'e} \ a \in l^{\infty} \text{ e quindi} \ \sum_j x_{n_i}(j) \ a(j) \to_i 0$$

mentre $\sum_j x_{n_i}(j) \ a(j) \ge \sum_{j=k_i}^{l_i} |x_{n_i}(j)| - \left[\sum_{j < k_i} |x_{n_i}(j)| + \sum_{j > l_i} |x_{n_i}(j)|\right] \ge \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$ contraddizione.

Esercizio 4. (i) Sia
$$\mu(\{x: |f(x)| \ge c\}) > 0$$
. Allora
$$\sup_{p \ge 1} (\int |f|^p)^{\frac{1}{p}} \ge (\int_{\{x: |f(x)| \ge c\}} |f|^p)^{\frac{1}{p}} \ge c\mu(\{x: |f(x)| \ge c\})^{\frac{1}{p}} \implies \sup_{p \ge 1} (\int |f|^p)^{\frac{1}{p}} \ge c \lim_{p \to +\infty} \sup_{p \ge 1} \mu(\{x: |f(x)| \ge c\})^{\frac{1}{p}} = c \implies \mu(\{x: |f(x)| \ge c\}) = 0$$
 se $c > \sup_{p \ge 1} (\int |f|^p)^{\frac{1}{p}}$ e quindi $\|f\|_{\infty} \le \sup_{p \ge 1} (\int |f|^p)^{\frac{1}{p}}$

(ii)
$$p > 1$$
 $\Rightarrow \int |f|^p = \int |f| |f|^{p-1} \le ||f||_1 ||f||_{\infty}^{p-1}$
 $\Rightarrow ||f||_p \le ||f||_1^{\frac{1}{p}} ||f||_{\infty}^{\frac{p-1}{p}} \Rightarrow \limsup_{p \to +\infty} ||f||_p \le ||f||_{\infty}$

Poi,
$$c < ||f||_{\infty} \Rightarrow \mu(\{x : |f(x)| \ge c\}) > 0$$
 ed allora
 $||f||_{p} \ge c \,\mu(\{x : |f(x)| \ge c\})^{\frac{1}{p}} \Rightarrow \liminf_{p \to +\infty} ||f||_{p} \ge c \Rightarrow \liminf_{p \to +\infty} ||f||_{p} \ge ||f||_{\infty}$

Esercizio 5.
$$l(\varphi) := \int_{\mathbf{R}^N} \varphi \, d\nu, \quad \varphi \in C_0^{\infty}(\mathbf{R}^N)$$
 é

funzionale lineare e continuo su $C_0(\mathbf{R}^N)$, sottospazio lineare di $L^{\infty}(\mathbf{R}^N, dx)$

(dx indichi la misura di Lebesgue in \mathbf{R}^N ; notiamo che nella classe delle funzioni uguali q.o. a una $\varphi \in C_0^\infty(\mathbf{R}^N), \varphi$ é l'unico rappresentante continuo).

Per Hahn-Banach, l ha un prolungamento lineare e continuo su tutto $L^{\infty}(\mathbf{R}^{N},dx)$.

Supponiamo esista $g \in L^1$: $l(f) = \int gf$, $\forall f \in L^{\infty}$. Allora, se E boreliano di misura (di Lebesgue) nulla, si ha che

 χ_E é limite q.o. di una successione $\varphi_n \in C_0(\mathbf{R}^N)$, con $\chi_E \leq \varphi_n(x) \leq 1 \quad \forall x$ e quindi

 $l(\varphi_n) = \int \varphi_n \, g \to_n \int \chi_E \, g = 0$

(per il Teorema di Lebesgue). Ció implica

$$\int \chi_E \, d\nu \le \underline{\lim}_n \int \varphi_n \, d\nu = \underline{\lim}_n l(\varphi_n) = \underline{\lim}_n \int \varphi_n \, g = 0$$