Corso di laurea in Matematica - Anno Accademico 2005/2006

GE4 - Geometria Differenziale 1

Tutorato I - Federico Coglitore e Livia Corsi (21-9-05)

Esercizio 1. Siano

$$u(t) = (x(t), y(t), z(t))$$

$$v(t) = (a(t), b(t), c(t))$$

due vettori in \mathbb{R}^3 che variano al variare del tempo $t \in I$ in maniera liscia (ad esempio vettori tangenti a due curve liscie). Dimostrare che il loro prodotto scalare

$$u(t) \cdot v(t) : I \longrightarrow \mathbb{R}$$

è una funzione liscia. Dimostrare inoltre che per la derivata del prodotto scalare vale la seguente regola di Leibniz:

$$\frac{d}{dt}(u(t)\cdot v(t)) = \dot{u}(t)\cdot v(t) + u(t)\cdot \dot{v}(t): I \longrightarrow \mathbb{R}$$

ESERCIZIO 2. Trovare una curva parametrizzata $\alpha(t)$ tale che

- 1. la sua traccia sia il cerchio unitario $x^2 + y^2 = 1$
- 2. α percorra il cerchio in senso orario
- 3. $\alpha(0) = (0,1)$

ESERCIZIO 3. Una curva parametrizzata $\alpha(t)$ ha la proprietà che la sua derivata seconda $\ddot{\alpha}(t)$ è identicamente nulla. Cosa si può dire sulla curva α ?

ESERCIZIO 4. Sia $\alpha: I \longrightarrow \mathbb{R}^3$ una curva parametrizzata, con $\dot{\alpha}(t) \neq 0 \ \forall t \in I$. Mostrare che $|\alpha(t)|$ è una costante non nulla se e solo se $\alpha(t)$ è ortogonale ad $\dot{\alpha}(t) \ \forall t \in I$.

ESERCIZIO 5. Sia v=(a,b,c) un vettore fissato e sia $\alpha:I\longrightarrow\mathbb{R}^3$ una curva liscia, dove I=[0,1]. Usare il Primo Teorema Fondamentale del Calcolo Integrale per dimostrare che

$$\int_0^1 v \cdot \dot{\alpha}(t)dt = v \cdot (\alpha(1) - \alpha(0)).$$