UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Laurea in Matematica GEOMETRIA 3

Prova scritta del 28-6-2005 - a.a. 2004-2005

- 1. (a) Si definiscano le nozioni di spazio topologico e di applicazione continua tra due spazi topologici;
- (b) Si enunci il risultato che dà altre due caratterizzazioni della continuità di applicazioni tra due spazi topologici;
- (c) si dimostri tale risultato.
- **2.** Sia (X, d) uno spazio metrico e sia $M \subset \mathbb{R}$ un sottoinsieme di numeri reali positivi e tale che inf M = 0. Si consideri la famiglia di dischi

$$\mathcal{B} = \{ D_m(x) : x \in X, m \in M \}.$$

- (a) Siano $x \in X$ e $m \in M$. Si dimostri che i sottoinsiemi $C_{m,x} = \{y \in X : d(x,y) \leq m\}$ sono chiusi.
- (b) Si dimostri che \mathcal{B} è una base della topologia dello spazio metrico (X, d).
- **3.** Sia X uno spazio topologico e sia $Y \subset X$ un sottoinsieme di X. Un punto $y \in Y$ si dice un punto isolato di Y se esiste un intorno N di y in X tale che $N \cap Y = \{y\}$.
- (a) Si dimostri che $D(Y) \cup \{punti \ isolati \ di \ Y\} = \overline{Y}$.
- (b) Si supponga che esiste $Y \subset X$ tale che sia Y che il suo complementare sono densi in X. Si dimostri che X non ha punti isolati.
- (c) Sia Z uno spazio topologico, $f: X \to Z$ un'applicazione continua e suriettiva e $B \subset X$ un sottoinsieme denso. Si dimostri che f(B) è denso in Z.
- 4. (a) Si definisca la nozione di topologia prodotto di una famiglia di spazi topologici;
- (b) Si enunci il risultato che relaziona la compattezza di due spazi topologici con quella dello spazio prodotto;
- (c) si dimostri tale risultato.
- **5.** Si consideri \mathbb{R}^2 con la topologia euclidea e siano $S \subset \mathbb{R}^2$ un sottoinsieme al più numerabile e $D \subset \mathbb{R}^2$ un disco.
- (a) Si dimostri che \mathbb{R}^2-S con la topologia indotta è connesso.
- (b) $\mathbb{R}^2 (D \cup S)$ con la topologia indotta è connesso?
- **6.** Si consideri \mathbb{R} con la topologia delle semirette sinistre $(-\infty, a), a \in \mathbb{R}$.

- (a) Si trovi un esempio di sotto
insieme $X\subset\mathbb{R}$ tale che X è connesso e infinito.
- (b) Si trovi un esempio di sotto
insieme $X\subset\mathbb{R}$ tale che X è compatto m
a \overline{X} non è compatto.
- (c) Si dimostri che $X\subset\mathbb{R}$ è compatto se e solo se X è limitato superioremente e contiene il suo estremo superiore.