V ESERCITAZIONE DI AM1B

1. Calcolo di limiti di successioni

Esempio 1.1. Siano $x_n \to \infty$, $\mathbb{R} \ni \alpha \neq 0$, $k \in \mathbb{N}$.

$$\lim_{n \to +\infty} \left(\frac{x_n + \alpha}{x_n} \right)^{x_n k} = \lim_{n \to +\infty} \left(\left(1 + \frac{\alpha}{x_n} \right)^{x_n} \right)^k = \lim_{n \to +\infty} \left(\left(1 + \frac{1}{\frac{x_n}{\alpha}} \right)^{\frac{x_n}{\alpha}} \right)^{\alpha k} = e^{\alpha k}$$

Nell'ultimo passaggio si è utilizzato il limite notevole $\to \frac{1}{e}$ ed il teorema ponte applicato alla funzione continua $f(x) = \left(1 + \frac{1}{x}\right)^x$.

Ad esempio si ha

$$\lim_{n \to +\infty} \left(1 + \frac{1}{2n} \right)^n = \sqrt{e}$$

Esempio 1.2.

$$\lim_{n \to +\infty} \frac{(n^3 - 1)\sin\frac{5}{n}}{n^3 - 17n^2 + 15} \left(\frac{n - 4}{n}\right)^n n =$$

$$\lim_{n \to +\infty} \frac{n^3 - 1}{n^3 - 17n^2 + 15} \cdot \frac{\sin\frac{5}{n}}{\frac{5}{n}} \cdot 5(1 - \frac{4}{n})^n = 5e^{-4}$$

Esempio 1.3.

$$\lim_{n \to +\infty} \frac{\tan^2(\frac{1}{n})}{1 - \cos\frac{1}{n}} = \lim_{n \to +\infty} \frac{\sin^2\frac{1}{n}}{\cos^2\frac{1}{n}} \frac{1}{1 - \cos\frac{1}{n}} = \lim_{n \to +\infty} \frac{\sin^2\frac{1}{n}}{(\frac{1}{n})^2} \frac{(\frac{1}{n})^2}{1 - \cos\frac{1}{n}} \frac{1}{\cos^2\frac{1}{n}} = 2$$

Esempio 1.4. Sia $a \neq 0$, vogliamo dimostrare che $\lim_{n \to +\infty} (\cos(\frac{a}{n}))^n = 1$.

$$(\cos(\frac{a}{n}))^n = ((\cos\frac{a}{n} - 1) + 1)^n = \left(\frac{\cos(\frac{a}{n}) - 1}{-\frac{a}{n}^2}(-(\frac{a}{n})^2) + 1\right)^n = (-\frac{a^2}{2n^2} + 1)^n = ((-\frac{a^2}{2n^2} + 1)^{n^2})^{\frac{1}{n}}$$

Poichè
$$\lim_{n\to+\infty}(-\frac{a^2}{2n^2}+1)^{n^2}=e^{-\frac{a^2}{2}}$$
 segue la tesi (infatti $(e^{-\frac{a^2}{2}})^{\frac{1}{n}}\to 1$).

2. Successioni per riccorrenza

Esempio 2.1.

$$\begin{cases} a_1 = \frac{\pi}{2} \\ a_{n+1} = \sin a_n \end{cases}$$

Osserviamo che, se x > 0, $0 \le \sin x < x$. Proviamo per induzione che $0 < a_n \le \frac{\pi}{2}$. Poichè la base induttiva è immediatamente verificata, supponiamo vero il risultato per n e proviamolo per n + 1. Si ha

$$0 < a_{n+1} = \sin(a_n) < 1 < \frac{\pi}{2}$$

Inoltre $a_{n+1} = \sin a_n < a_n$ perchè $0 < a_n$. La successione risulta quindi decrescente e limitata dal basso e dunque ammette limite. Poichè $\sin a_n = a_{n+1}$, calcolando il limite ad entrambi i membri, si ha che

$$l = \sin l \Rightarrow l = 0$$

Esempio 2.2.

$$\begin{cases} a_{n+1} = (a_n)^{a_{n-1}} & n \ge 2 \\ a_0, a_1 \in (0, 1) \end{cases}$$

Si dimostra per induzione che $a_n > 0 \forall n$; infatti la base induttiva è chiaramente verificata. Supposta vera l'asserzione per n proviamola per n+1. Si ha che

$$a_{n+1} = (a_n)^{a_{n-1}} > 0$$

Analogamente, procedendo ancora per induzione, si verifica che $a_n < 1 \forall n$ (infatti $a_{n+1} = (a_n)^{a_{n-1}} < 1$ se a_n e a_{n-1} sono entrambi minori di 1). Osserviamo che la successione è crescente: essendo infatti $a_n < 1$, si ha che

$$a_{n+1} = a_n^{a_{n-1}} > a_n$$

Passando al limite per entrambi i membri, otteniamo allora

$$l = l^l \Rightarrow e^{\ln l} = e^{l \ln l} \Rightarrow \ln l = l \ln l \Rightarrow (\ln l)(l-1) = 0 \Rightarrow l = 1$$

Esempio 2.3.

$$\begin{cases} a_1 = \frac{\pi}{4} \\ a_{n+1} = a_n^{\sin a_n} \end{cases}$$

Si osservi che, se x>1, allora $x^{\sin x}\leq x$, mentre se $0\leq x\leq 1,\ x^{\sin x}\geq x$. Dimostriamo per induzione che $0\leq a_n\leq 1$ per ogni n. La base induttiva è chiaramente verificata. Supponiamo $0\leq a_n\leq 1$. Allora

$$a_{n+1} = a_n^{\sin a_n} < 1$$

Si ha quindi $0 \le \sin a_n \le \sin 1$ per ogni n. La successione risulta inoltre crescente: $a_{n+1} = a_n^{\sin a_n} \ge a_n$ perché $0 \le a_n \le 1$ e $0 \le \sin a_n \le 1$. Passando al limite per entrambi i membri, si ha

$$l = l^{\sin l} \Rightarrow e^{\ln l} = e^{\sin l \ln l} \Rightarrow \ln l = \sin l \ln l \Rightarrow l = 1.$$

Osservazione 2.4. $\sin l = 1$ non è soddisfatta nel dominio considerato.

3. Limiti di funzioni

Esempio 3.1.

$$\lim_{x \to 0} \left(\frac{\sin x}{x^3} \frac{(\cos x - 1)}{\cos^2 x} (x^4 - 1) \right) = \frac{1}{2}$$

Il risultato segue dal fatto che

$$\frac{\sin x}{x} \to 1$$
 $\frac{\cos x - 1}{x^2} \to -\frac{1}{2}$ $\frac{x^4 - 1}{\cos^2 x} \to -1$

Esempio 3.2.

$$\lim_{x \to +\infty} (x - \sin^2 x \ln x) = +\infty$$

infatti
$$(x - \sin^2 x \ln x) = x(1 - \frac{\sin^2 x \ln x}{x})$$
 e

$$\frac{\sin^2 x \ln x}{x} \to 0.$$

Esempio 3.3.

$$\lim_{x\to 1} \left(\frac{\ln|x| + \arctan|x|}{x-1}\sin^2(x-1)\right) = 0$$
 E' sufficiente osservare che $\ln|x|\to 0$ arctan $|x|\to \frac{\pi}{4}$ e

$$\frac{\sin^2(x-1)}{x-1} = \frac{\sin(x-1)}{x-1}\sin(x-1) \to 0$$

Esempio 3.4. Sia

$$f(x) = \begin{cases} 2x + 2 & \text{se } x < 0, \\ 0 & \text{se } x = 0, \\ \ln x & \text{se } 0 < x \le 1, \\ \frac{1}{x - 1} & \text{se } x > 1. \end{cases}$$

Calcoliamo i seguenti limiti.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 2x + 2 = 2;$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \ln x = -\infty;$$

$$\lim_{x \to 1^{-}} f(x) = \ln x = 0;$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{1}{x - 1} = +\infty;$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \ln x = 0;$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 2x + 2 = -\infty;$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{x - 1} = 0.$$

Osserviamo che la funzione è continua su tutto \mathbb{R} tranne che in 0 ed 1.

4. Estremi inferiori e superiori

Esempio 4.1. Sia $a_n = \frac{2n \sin \frac{1}{n}}{n^2+1} > 0$.

$$0 < \frac{1}{n} \le 1 < \frac{\pi}{2} \Rightarrow \sin 1 \ge \sin \frac{1}{n} > 0$$

Quindi $\lim_{n\to+\infty} a_n = 0 \Rightarrow \inf a_n = \min a_n = 0.$

Osserviamo che

$$\frac{2n}{n^2+1} \le 1 \Leftrightarrow 2n \le n^2+1 \Leftrightarrow n^2+1-2n \ge 0 \Leftrightarrow (n-1)^2 \ge 0.$$

Quindi

$$\frac{2n}{n^2+1} \le 1 \quad \forall n$$

Perciò

$$\frac{2n\sin\frac{1}{n}}{n^2+1} \le \sin 1 \quad \forall n$$

D'altra parte se n = 1, $a_1 = \sin 1 \Rightarrow \sup a_n = \max a_n = \sin 1$.

Esempio 4.2. Siano $E = \{x \in \mathbb{R} \mid x = (-1)^n a^{-n}, n \in \mathbb{N}, n \ge 1\}, \text{ con } a \ge 1.$

$$F = \{a^{-2k}, k \ge 1\} \in G = \{-a^{-2k-1}, k \ge 1\}.$$

Osserviamo che $E=F\cup G.$ Gli elemmenti di Fsono positivi mentre quelli di Gsono negativi. Sicché

$$\inf E = \inf G = -\frac{1}{a^2} \quad \text{e} \quad \sup E = \sup F = \frac{1}{a^2}$$