I Esonero - Am1b Analisi Matematica 1

Docente: Dott. Pierpaolo Esposito

11 Aprile 2005

Esercizio 1

Mostrare che, se $a \ge 1$ e $b \le 1$, vale $a + b \ge ab + 1$. Tenendo presente questo fatto, dati a_1, \ldots, a_n numeri positivi con $a_1 \dots a_n = 1$, provare per induzione che:

$$a_1 + a_2 + \dots a_n \ge n.$$

Esercizio 2

Sia a_n la successione definita per ricorrenza nel seguente modo:

$$\begin{cases} a_1 = 4 \\ a_{n+1} = \sqrt{6 + a_n}. \end{cases}$$

Trovare il limite, se esiste, della successione $\{a_n\}$.

Esercizio 3

Discutere la convergenza, eventualmente al variare del parametro x, delle seguenti serie: a) $\sum_{n=1}^{+\infty} \log \frac{n+1}{n}$, b) $\sum_{n=1}^{+\infty} e^{-n} \sin(n! x)$, c) $\sum_{n=1}^{+\infty} \frac{x^n}{(n+1)(1+x)^n}$, $x \neq -1$, d) $\sum_{n=1}^{+\infty} \frac{x^{2n}}{n^2+x^{2n}}$.

Esercizio 4

Calcolare i seguenti limiti, qualora esistano:

- a) $\lim_{x \to +\infty} \frac{\sqrt{x^3 + 9} \sqrt{x^4 + 1}}{x^2 + 2}$, b) $\lim_{n \to +\infty} \frac{\log(n^3)}{\log(n^3 + 3n^2)}$,
- c) $\lim_{x\to 0} \frac{(1+x)^{\frac{1}{3}}-1}{x}$, d) $\lim_{n\to +\infty} \left(\cos\left(\frac{1}{n}\right)\right)^n$,
- e) $\lim_{x \to +\infty} \left(1 + \sin(\frac{1}{x^2})\right)^{\frac{1}{1 \cos(\frac{1}{x})}}$.

Esercizio 5

Giustificando la risposta, determinare estremo superiore ed inferiore del seguente insieme:

$$A = \left\{ x = \frac{n^3 - 1}{4n^3} + \frac{1}{4} : n \in \mathbb{N} \right\}.$$

Discutere inoltre se l'insieme A ammette massimo o minimo.

Esercizio 6 (bonus)

Giustificando la risposta, calcolare, se esiste, il seguente limite:

$$\lim_{n \to +\infty} [n \sin(\frac{1}{n})],$$

dove [x] denota la parte intera di $x \in \mathbb{R}$.