VII ESERCITAZIONE DI AM1B

In questa lezione vi saranno esercizi su continuità ed uniforme continuità di funzioni e si darnno numerosi esempi di funzioni uniformemente continue.

1. Continuità di funzioni

Esempio 1.1 (La funzione di Dirchlet). Si consideri la funzione

$$1_{\mathbb{Q}} = \left\{ \begin{array}{ll} 1, & x \in \mathbb{Q}; \\ 0, & x \notin \mathbb{Q}. \end{array} \right.$$

Si osservi che \mathbb{Q} e $\mathbb{R} \setminus \mathbb{Q}$ sono densi in \mathbb{R} , cioè ogni intorno di ogni loro punto interseca il complementare. Quindi in ogni intorno di ogni loro punto x_0 la funzione assume un valore che dista 1 da x_0 . Quindi $1_{\mathbb{Q}}$ non è continua su ogni x_0 .

Esempio 1.2. Si consideri la funzione

$$f(x) = \begin{cases} \frac{1}{n}, & x = \frac{m}{n}, M.C.D(m, n) = 1; \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

Con un ragionamento simile a quanto fatto sopra verificare che f non è continua in \mathbb{Q} .(Provare per esrecizio!)

Proviamo ora la continuità in $\mathbb{R}\setminus\mathbb{Q}$. Sia $x_0=\not\in\mathbb{Q}$ e supponiamo $x_0\in(0,N)$ per qualche $N\in\mathbb{N}$ (si fa in modo simile se $x_0<0$). Per ogni $\varepsilon>0$ sia N' tale che $\frac{1}{N'}<\varepsilon$. Allora, se $x\in(0,N)\cap\mathbb{Q}$, si ha

$$f(x) \ge \frac{1}{N'}$$

se e solo se $x = \frac{m}{n}$, M.C.D(m,n) = 1 e $n \leq N'$ e m < NN'. Sicché vi sono solo un numero finito di tali x. Quindi restringendo l'intorno di x_0 possiamo ottenere $f(x) \leq \varepsilon$ per ogni x in tale intorno. Sicché abbiamo provato che f è continua su $\mathbb{R} \setminus \mathbb{Q}$.

Esempio 1.3. Per quali valori $a, b \in \mathbb{R}$ la funzione

$$f(x) = \begin{cases} a \sin x, & x \le \frac{\pi}{2}; \\ b(\cos x - \frac{\cos x}{x - \frac{\pi}{2}}), & x > \frac{\pi}{2} \end{cases}$$

è continua?

Negli intervalli $(-\infty, \frac{\pi}{2})$ e $(\frac{\pi}{2}, +\infty)$ la funzione è chiaramente continua in quanto composizione di funzioni continue.

Imponiamo ora la continuita in $x = \frac{\pi}{2}$. Si ha $f(\frac{\pi}{2}) = a$ mentre

$$\lim_{x \to \frac{\pi}{2}^{+}} f(x) = \lim_{x \to \frac{\pi}{2}^{+}} b(\cos x - \frac{\cos x}{x - \frac{\pi}{2}}) =$$

d'altra parte $\cos x = \sin(\frac{\pi}{2} - x)$ da cui segue

$$= \lim_{x \to \frac{\pi}{2}^+} b(\cos x + \frac{\sin(x - \frac{\pi}{2})}{x - \frac{\pi}{2}}) = b$$

Sicché f è continua se e solo se a = b.

Esempio 1.4. Determinare $\alpha \in \beta$ tali che in (-1,1)

$$f(x) = \begin{cases} x^{\alpha} \sin^2 x, & \text{se } 0 < x < 1 \\ 0, & \text{se } x = 0 \\ |x|^{\beta} \cos^2(1/x), & \text{ze } -1 < x < 0. \end{cases}$$

Si osservi che $\lim_{x\to 0^+} f(x) = 0$ implica $\alpha > -2$ e $\lim_{x\to 0^-} f(x)$ implica $\beta > 0$.

Esempio 1.5 (Teorema del punto fisso in una variabile). Provare che se ho una funzione continua

$$f:[a,b]\to[a,b]$$

allora esiste x tal che f(x) = x.

Si consideri la funzione g(x) = f(x) - x. Allora $g(a) = f(a) - a \ge 0$ e $g(b) = f(b) - b \le 0$. Sicché per il teorem di esistenza degli zeri esiste x tale che g(x) = x, cioè f(x) = x.

Esempio 1.6. Provare che l'equazione

$$e^x = x^2 - 2x + k$$

ammette almeno una soluzione per ogni $k \in \mathbb{R}$.

Si studi la funzione $g(x) = e^x - x^2 + 2x - k$. Essa è continua per ogni k. Inoltre

$$\lim_{x \to -\infty} g(x) = -\infty$$
$$\lim_{x \to +\infty} g(x) = +\infty$$

da cui segue che, per il teorema di esistenza degli zeri, g(x) ha uno zero su \mathbb{R} che equivale a dire che esiste una soluzione dell'equazione che si voleva studiare.

2. Uniforme continuità

Ricordiamo la definizione di uniforme continuità

Definizione 2.1. Sia $A \subseteq \mathbb{R}$. Una funzione $f: A \to \mathbb{R}$ si dice uniformemente continua in A se, per ogni $\varepsilon > 0$, esiste $\delta > 0$ tale che per ogni coppia x_0, x_1 di punti di A, con $|x_0 - x_1| < \delta$, risulti

$$|f(x_0) - f(x_1)| < \varepsilon$$

Osservazione 2.2. Si osservi che l'uniforme continuità implica la continuità.

Ricordiamo l'importante Teorema di Cantor

Teorema 2.3. Se f è continua in una intervallo chiuso e limitato (cioè compatto) di \mathbb{R} allora f è uniformente continua.

Esempio 2.4. Sia $f:[0,+\infty)\to\mathbb{R}$ una funzione uniformemente continua. Si dimostri che esistono due costanti A e B tali che

$$|f(x)| \le A + Bx$$

Poniamo $\varepsilon = 1$.

Sia δ tale che, per ogni $x_0, x_1 \ge 0, |f(x_0) - f(x_1)| < 1$. Allora

$$|f(x) - f(0)| = |\sum_{i=1}^{[x/\delta]} (f(k\delta) - f((k-1)\delta)) + f(x) - f([x/\delta])|$$

$$\leq \sum_{i=1}^{[x/\delta]} |(f(k\delta) - f((k-1)\delta))| + |f(x) - f([x/\delta])|$$

$$\leq [x/\delta] + 1 \leq x/\delta + 2$$

Sicché

$$|f(x)| \le |f(0)| + x/\delta + 2$$

da cui la tesi.

Esempio 2.5. Verificare se $f(x) = x^{\alpha}$ è uniformemente continue in $[1, \infty]$ se solo se $\alpha < 1$.

Se $\alpha > 1$ basta osservare che non esistono A, B tale che $x^2 \leq Ax + B$. Infatti se così fosse si avrebbe $g(x) = x^{\alpha} - Ax - B \leq 0$ per ogni x ma ciò contraddice il fatto che $\lim_{x\to\infty} g(x) = +\infty$. Quindi per l'esempio precedente f non è uniformemente continua.

Proviamo invece che, se $\alpha \leq 1$, f è uniformemente continua. Per ogni $x_1 \geq x_2 \geq 1$ si ha

$$x_1^{\alpha} - x_2^{\alpha} \le x_2^{\alpha}((\frac{x_1}{x_2})^{\alpha} - 1) \le x_2^{\alpha}(\frac{x_1}{x_2} - 1) \le \frac{x_1 - x_2}{x_2^{1 - \alpha}} \le x_1 - x_2$$

Per ogni $\varepsilon > 0$ basta prendere $\delta = \varepsilon$ e si ha la tesi.

Esempio 2.6. Provare che il prodotto di funzioni $f, g : A \to \mathbb{R}$ uniformemente continue e limitate è una funzione uniformemente continua.

Per ipotesi esiste M>0 tale che $|f(x)|\leq M$ e $|g(x)|\leq M$ per ogni x. Sia $\varepsilon>0$. Allora per ogni x_1,x_2 si ha

$$(1) |(fg)(x_1) - (fg)(x_2)| \le |f(x_1)g(x_1) - f(x_1)g(x_2)| + |f(x_1)g(x_2) - f(x_2)g(x_2)| = = |f(x_1)||g(x_1) - g(x_2)| + |g(x_2)||f(x_1) - f(x_2)|$$

Poiché f e g sono uniformemente continue esistono δ_1 e δ_2 tali che

$$|f(x_1) - f(x_2)| < \frac{\varepsilon}{2M}$$
 $|g(x_1) - g(x_2)| < \frac{\varepsilon}{2M}$

se $|x_1 - x_1| < \delta_1$ e $|x_1 - x_2| < \delta_2$ rispettivamente. Quindi prendendo $\delta = \min\{\delta_1, \delta_2\}$ e $|x_1 - x_2| < \delta$ le due disuguaglianze sono entrambe verificate e quindi da (1) si ha

$$|(fg)(x_1) - (fg)(x_2)| < \varepsilon$$

Si osservi che x è una funzione uniformente continua su \mathbb{R} . Ma su \mathbb{R} non lo è x^n per ogni $n \in \mathbb{N}$ come abbiamo visto. Ciò e vero perché x non è limitata. Se ci restringiamo ad un intervallo limitato invece x^n è uniformemente continua per ogni $n \in \mathbb{N}$.

Esempio 2.7. La somma di due funzioni $f_1, f_2 : \mathbb{A} \to \mathbb{R}$ uniformemente continue è uniformemente continua.

Infatti per ogni $\varepsilon > 0$ esiston δ_1 e δ_2 tali che se $|x - y| < \delta_i$, per i = 1, 2, allora $|f_i(x) - f_i(y)| < \frac{\varepsilon}{2}$. Sia $\delta = \min\{\delta_1, \delta_2\}$. Allora se $|x - y| < \delta$ segue

$$|(f+g)(x)-(f+g)(y)| = |f(x)-f(y)+g(x)-g(y)| \le |f(x)-f(y)| + |g(x)-g(y)| < \varepsilon$$

Esempio 2.8. Si provi che se $f:A\to B$ e $g:B\to C$ sono funzioni uniformementi continue allora anche $g\circ f$ lo è.

Sia $\varepsilon > 0$. Allora esiste $\delta > 0$ tale che per ogni $x_0, x_1 \in B$ con $|x_0 - x_1| < \delta$ allora $|g(x_0) - g(x_1)|$. D'altra parte esiste δ_1 tale che se $|y_0 - y_1| < \delta_1$, $y_0, y_1 \in A$, allora $|f(y_0) - f(y_1)| < \delta$. Perciò per ogni $y_0, y_1 \in A$ con $|y_0 - y_1| < \delta_1$ si ha

$$|g(f(y_0)) - g(f(y_1))| < \varepsilon$$

Esempio 2.9. Sia f una funzione continua in $[q, +\infty)$. Provare che se y = ax + b è un asintoto allora f è uniformemente continua in $[q, +\infty)$.

Infatti sia $\varepsilon > 0$. Allora per definizione di asintoto esiste q_0 tale che, per ogni $x \ge q_0$, $|f(x) - f(q_0)| < \frac{\varepsilon}{3}$. Provo che in tale insieme esiste δ_1 tale che per ogni $x_1, x_2 \ge q_0$ con $|x_2 - x_1| < \delta_1$ si ha

$$|f(x_1) - f(x_2)| < \varepsilon$$

Infatti se $\delta < \frac{3}{a}$

$$|f(x_1) - f(x_2)| \le |f(x_1) - ax_1 - b| + |ax_1 + b - ax_2 - b| + |ax_2 + b - f(x_2)|$$

 $< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$

Siccome $[q_0, q_1]$ è compatto e f continua si ha che f è uniformemente continua. Sicché esiste δ_2 tale che

$$|f(x_1) - f(x_2)| < \varepsilon$$

per ogni $x_1, x_2 \in [q_0, q_1]$ con $|x_1 - x_2| < \delta_2$.

Quindi se si prende $\delta = \min\{\delta_1, \delta_2\}$ nei due casi precedenti è verificata la condizione dell'uniforme continuità.

Si studi ora il caso restante $q_0 \le x_0 \le q_1 \le x_2$ e $|x_2 - x_1| < \delta$. Si ha

$$|f(x_2) - f(x_1)| \le |f(x_2) - f(q_1)| + |f(q_1) - f(x_1)| < 2\varepsilon$$

per quanto detto sopra.

Esempio 2.10. Dall'esempio precedente segue ad esempio che

$$f(x) = ax + (\sin x)^n + b$$

è uniformemente continua in $[q, +\infty]$ per ogni $q, a, b \in \mathbb{R}$ e $n \in \mathbb{N}$. Infatti l'asintoto di f(x) è ax + b (verificare!).

Esempio 2.11. Se $f: \mathbb{R} \to \mathbb{R}$ è continua e periodica di periodo T > 0 allora è uniformemente continua. Essendo continua sul compatto [0, 2T] ivi è uniformemente continua. Sicché per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che

$$x, y \in [0, 2T], |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

Pur di cambiare δ con $\delta' = \min{\{\delta, T\}}$ si può supporre $\delta \leq T$.

Siano ora $x' \geq y'$ con $x' - y' < \delta$. Siano $x'' \in [0, T]$ tale che $x' \equiv x'' \mod T$. Sia y'' l'unico elemento di [0, 2T] tale che $y'' \equiv y' \mod T$ e $|y'' - x''| < \delta$. (Si osservi che se si fosse richiesto solo $y'' \equiv y'$ la soluzione non sarebbe stata unica). Sicché

$$|f(x') - f(y')| = |f(x'') - f(y'')| < \varepsilon$$

Esempio 2.12. Si osservi che si hanno hanno ora a disposizione molti esempi di funzioni uniformemente continue. Infatti tutte le potenze x^{α} con $0 < \alpha \le 1$, le funzioni periodiche, le funzioni con asintoto, le loro somme, composizioni, prodotti (se le funzioni sono limitate). Ad esempio la funzione

$$f(x) = (\sin \sqrt{x})^{\frac{\sqrt{2}}{2}} \cos x^{1/3} + x \arctan x + 76$$

è uniformemente continua. Perché?